Optimization and Generalization of Neural Networks at the Edge

Rahim Entezari July 17th, 2023

Scaling trend

Bernstein, Liane, et al. "Freely scalable and reconfigurable optical hardware for deep learning." *Scientific reports* 11.1 (2021): 3144. https://the-decoder.com/gpt-4-is-1-76-trillion-parameters-in-size-and-relies-on-30-year-old-technology/

Neural networks at the edge

Neural networks at the edge

Pervasive but limited resources \rightarrow make AI possible on the edge

Generalization

In-Distribution vs. Out-Of-Distribution generalization (ID vs. OOD)

Data	set
Train	Test

ID generalization

Generalization

In-Distribution vs. Out-Of-Distribution generalization (ID vs. OOD)

Datas	set
Train	Test

ID generalization

- Regularization
- Dropout
- Early stopping

Generalization

In-Distribution vs. Out-Of-Distribution generalization (ID vs. OOD)

- Transfer learning
- Domain adaptation

Make neural networks work at the edge To improve generalization

Make neural networks work at the edge To improve generalization To understand/probe trained networks ensembles to make neural networks work at the edge

Dynamic environment \rightarrow dynamic data Reliable AI applications

Part 1: Sparsity

Sparsity

"With all things being equal, the simplest explanation tends to be the right one" (William of Ockham, ~1300)

Relation between sparsity and generalization

Does sparsity help/hurt generalization?

Magnitude pruning

Lottery Ticket

Effective model capacity

1. Data corruption

2. Weight perturbation

1. Data corruption

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur

- Performance on corrupted datasets
 - MNIST-C
 - CIFAR10-C
 - CIFAR100-C

1. Data corruption

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur

- Performance on corrupted datasets
 - MNIST-C
 - CIFAR10-C
 - CIFAR100-C

2. Weight perturbation

- Add Gaussian noise to each weight
 - $\circ \quad \mathbf{z_i} \sim N\left(\mu, \omega_i^2 \sigma_i^2\right)$
- Flatness of achieved minima

1. Data corruption

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur

- Performance on corrupted datasets
 - MNIST-C
 - CIFAR10-C
 - CIFAR100-C

2. Weight perturbation

- Add Gaussian noise to each weight
 - $\circ \quad \mathbf{z_i} \sim N\left(\mu, \omega_i^2 \sigma_i^2\right)$
- Flatness of achieved minima

1. Data corruption

2. Weight perturbation

contrary to common belief, sparsity indeed does not hurt network generalization

What is the effect of sparsity on learned representations?

Learned representations: UMAP

Supervised

Dense

Learned representations: UMAP

Dense

GMP 90%

One-shot 90%

UMAP: what if we change the training algorithm?

Supervised

Supervised Contrastive

UMAP: supervised vs. semi-supervised

Supervised

GMP 90%

One-shot 90%

26

Part 2: Loss Landscape

Motivation

Ensembling helps generalization

Motivation

Form an ensemble model

1. In output space

Motivation

Form an ensemble model

- 1. In output space
- 2. In weight space (Embedded ML)

Weight Averaging

Ensemble by weight averaging

Requirements:

1. Solutions should be functionally diverse

Weight Averaging

Ensemble by weight averaging

Requirements:

- 1. Solutions should be functionally diverse
- 2. Solutions should reside in one basin

Related works

Functionally different solutions

Weight space averaging

Related works

Functionally different solutions

Weight space averaging

Is there any way to make different solutions in one basin?

Functionally different solutions

Weight space averaging

Conjecture

A, B, C, and D are minimas in different basins with barriers between pairs.

Conjecture

Taking <u>permutations</u> into account, there is likely no <u>barrier</u> in the linear interpolation between SGD solutions.

Conjecture

Taking <u>permutations</u> into account, there is likely no <u>barrier</u> in the linear interpolation between SGD solutions.

Functionally different solutions

Weight space averaging

Permutations in Neural Networks

3! = 6 permutations

Permutations does not change the function!

How to find the appropriate permutation?

Permutation by brute force

- ResNet-50 \rightarrow 10 ⁵⁵¹⁰⁹
- For comparison, the number of atoms in universe is about 10⁸²

Permutation by Simulated Annealing

Permutation by Simulated Annealing

Permutation by Simulated Annealing

Neuron Alignment: Functional Difference

$$\delta E_l^{opt} = \frac{1}{2} (\tilde{\mathbf{w}}_{l,i}^A - \tilde{\mathbf{w}}_{l,j}^B)^\top \cdot \left((\tilde{\mathbf{H}}_{l,i}^A)^{-1} + (\tilde{\mathbf{H}}_{l,j}^B)^{-1} \right)^{-1} \cdot (\tilde{\mathbf{w}}_{l,i}^A - \tilde{\mathbf{w}}_{l,j}^B)$$

He, Xiaoxi, Zimu Zhou, and Lothar Thiele. "Multi-task zipping via layer-wise neuron sharing." arXiv preprint arXiv:1805.09791 (2018).

Neuron Alignment: Functional Difference

Neuron Alignment methods: a comparison

Neuron Alignment methods: a comparison

Neuron Alignment: Correlation Matching

Network A

Network B

- Resnet-50
- ImageNet
- First layer: 64 filters

Neuron Alignment: Correlation Matching

Network A

Network B

 $\sum_{i} \operatorname{corr}(X_{l,i}^{(1)}, X_{l,P_{l}(i)}^{(2)})$

A aligned to B

Neuron Alignment: Correlation Matching

Works for shallow+wide MLPs

Correlation Matching breaks for deeper networks

Correlation Matching breaks for deeper networks

But why?

Filter 9

1	1			F	in the second		
4		Re.	4				
11			-	*		-	-
	3	1		No.			
	il.				10	+	
.8	-		1			2	
4			in the second		1	+	+
2		No.		-	1	These	1

Filter 9

$$Var(X_{\alpha}) = Var\left(\frac{X_{1} + X_{2}}{2}\right)$$

= $\frac{Var(X_{1}) + Var(X_{2}) + 2Cov(X_{1}, X_{2})}{4}$
= $\frac{std^{2}(X_{1}) + std^{2}(X_{2}) + 2 \cdot corr(X_{1}, X_{2}) \cdot std(X_{1})std(X_{2})}{4}$
= $\left(\frac{std(X_{1}) + std(X_{2})}{2}\right)^{2} - \frac{(1 - corr(X_{1}, X_{2}))}{2}std(X_{1})std(X_{2})$

$$\operatorname{Var}(x_{\alpha}) = \operatorname{Var}\left(\frac{x_{1} + x_{2}}{2}\right) = \frac{1}{4}(\operatorname{std}(x_{1})^{2} + \operatorname{std}(x_{2})^{2} + \operatorname{Corr}(x_{1}, x_{2}) \cdot \operatorname{std}(x_{1}) \cdot \operatorname{std}(x_{2}))$$

REPAIR: Re-estimate Batchnorm statistics

REPAIR: Re-estimate Batchnorm statistics

Part 3: Pre-training Data

Research questions

→ R1: role of pre-training data

Given a target task, which dataset to pre-train?

- \rightarrow R2: role of pre-training method
 - Given a target task, which pre-train method to choose?
 - supervised ImageNet or contrastive LAION?

Experimental setup

Pre-training

CLIP

LAION, YFCC, WIT, Conceptual captions, Redcaps, Shutterstock

Finetuning

Few-shot: 1/5/10/20/all samples per class

CIFAR100, DTD, CALTECH101, PETS, REAL (domain net), CLIPART (domain net), CameraTraps, Cassava Leaf Disease, EuroSAT

Pre-training datasets

LAION

Yellow sandals for women pointy and low heeled Beatnik Françoise Mustard

Islamic vector geometric ornaments based on traditional arabic art. Oriental seamless pattern. Muslim mosaic. Turkish, Arabian tile on a white background. Mosque ...

Conceptual captions

3 Bedrooms Terraced House for sale in Eastbourne Road, Walton, Liverpool, Merseyside, L9

Minimum Wage Barbie

Illustration of hand holding the id card. Vector illustration flat design.

<PERSON>: U. <PERSON> in United States Army. First <PERSON> appointed to that position. First, &, so far, only <PERSON> to serve on Joint Chiefs of Staff. Black H...

Finetuning datasets

name	CIFAR100	DTD	REAL (domain net)	CLIPART (domain net)	Camera traps	Cassava leaf disease	EuroSAT
samples	50K	5.6K	172K	172K	58K	21K	27K
classes	100	47	345	345	15	5	10

assava Mosi

assava Mosaic Disease

Which dataset to pre-train?

100

Number of shots

68

69

Average over 9 downstream datasets

Redcaps on PETS

Redcaps on PETS

lofoten archipelago by <usr>

foggy night in the vancouver forest

bubba is so unbelievably cute when she's sleeping!

the kids got t-shirts

your present condition!

paused the x-men at just the right time.

homemade flammkuchen for dinner...

duchesse satin wedding guest dressfeaturing bonus pockets!

in a field of yellow and green

i'm drunk, and this is lucy.

eerie section of trail on a long-forgotten country backroad. - long path, catskills park ny

my handsome new neighbour

dressing up for the family photo

shot from our airbnb porch view on oia on santorini in greece

completed a small remodel of the half bath. first timer.

Redcaps on PETS

Pre-training dataset	Top 20 words in 1M sample of captions
Shutterstock	background, vector, illustration, design, icon, pattern, texture, style, woman, concept, hand, color, flower, view, template, line, business, logo, card, symbol
Redcaps	day, today, year, time cat , plant, friend, anyone, picture, baby, guy, week, dog home, morning, night, month, way, boy, work
YFCC-15m	photo, day, park, street, city, picture, view, time, world, year, house, state, center, part garden shot image building road museum
LAION-15m	photo, stock, image, black, woman, design, set, vector, white, print, home, men, blue dress art card sale gold bag cover
CC-12m	illustration, stock, art, design, photo, image, background, room, vector, house, home woman wedding style photography royalty car fashion girl world
CC-3m	background, actor, artist, player, illustration, view, woman, man, football, team, tree premiere city vector day girl beach game hand people
WIT	view, church, station, map, house, building, hall, museum, city, location, street, park, river, state, john, county, town, center, bridge, world

Table 2: Most common words in captions of pre-training distributions

Which pre-train method?

Supervised vs. CLIP

Supervised vs. CLIP

Adding 15x more data?

Adding 15x more data?

supervised

What if we scale to 2B samples?

80

What if we scale to 2B samples?

supervised

Take away

- ➤ Sparsity:
 - There are several motivations for sparity, one is improving generalization.
 - Sparsity has different effects when combined with supervised and semi-supervised training.

Take away

- Loss landscape:
 - Studying the loss landscape of neural networks has implications on model generalization.
 - Accounting for permutation invariance, barriers can be eliminated.
 - New lens to loss landscape: we took the first steps towards understanding ensembles and distributed training.

Take away

- ➤ Role of data:
 - Changing the pre-training dataset leads to noticeable differences in few-shot transfer performance.
 - Specific datasets like shutterstock perform well on almost all studied target tasks.
 - Data curation matters. We need 15-2000X more data to compensate for labeling.

Thanks for your attention