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Introduction FMeotivation

Neural networks at the edge

https://www.thinkebiz.net/what-edge-computing/ 3



Introduction FMeotivation

Neural networks at the edge

Pervasive but limited resources — make Al possible on the edge
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Introduction FGeneralization

Generalization

In-Distribution vs. Out-Of-Distribution generalization (ID vs. 00D)

[ Dataset } - Regularization
- Dropout

Train ][ Test } - Early stopping

)

ID generalization



Introduction FGeneralization

Generalization

In-Distribution vs. Out-Of-Distribution generalization (ID vs. 00D)

- Transfer learning
- Domain adaptation

i)

style shifts

A background shifts
corruption shifts

destruction shifts texture shifts

Zhang, Chongzhi, et al. "Delving deep into the generalization of vision transformers under distribution shifts."CVPR. 2022. 7
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duction FOutline

Generalization
of Neural Networks
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Part 1 FSparsity

Sparsity

“With all things being equal, the simplest explanation tends to be the right one” (William of Ockham, ~1300)

@ iterate

& & [ 4 2 L5
s Sol 0ol %%
Z .)0 @ o
initialize structure (re)initialize weights training prune / regrow retrain

@D reset / rewind

14

Hoefler, Torsten, et al. "Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks." arXiv preprint arXiv:2102.00554 (2021).



Part 1 FSparsity

Relation between sparsity and generalization

Does sparsity help/hurt generalization?

Rewind Weights
to Initialization

34

Prune Low
Magnitude Weights

Training to
Convergence

Random
Initialization

Before pruning After pruning

Magnitude pruning Lottery Ticket
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Effective model capacity
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Sparsity [FRobustness

Sparsity and Generalization

1. Data corruption 2. Weight perturbation
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Sparsity [FRobustness

Sparsity and Generalization

1. Data corruption

e Defocus Blur Frosted Glass Blur

- Performance on corrupted

datasets
o MNIST-C
o CIFAR10-C
o CIFAR100-C
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Sparsity and Generalization

1. Data corruption 2. Weight perturbation

- Add Gaussian noise to each weight

o z~N(uw??)

- Flatness of achieved minima

- Performance on corrupted

datasets
o MNIST-C
o CIFAR10-C
o CIFAR100-C

Image source [Li et al. 2018]
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Sparsity [FRobustness

Sparsity and Generalization

1. Data corruption
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contrary to common belief, sparsity indeed does not hurt network generalization

Timpl, Lukas, et al. "Understanding the effect of sparsity on neural networks robustness." arXiv preprint arXiv:2206.10915 (2022). 21



Sparsity = Learned Representations

What is the effect of sparsity on learned representations?

22



Sparsity = Learned Representations

Learned representations: UMAP

Supervised nl - / {
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Corti, Francesco, et al. "Studying the impact of magnitude pruning on contrastive learning methods." arXiv preprint arXiv:2207.00200 (2022). 23



Sparsity = Learned Representations

Learned representations: UMAP
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Corti, Francesco, et al. "Studying the impact of magnitude pruning on contrastive learning methods." arXiv preprint arXiv:2207.00200 (2022).



Sparsity = Learned Representations

UMAP: what if we change the training algorithm?
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Sparsity = Learned Representations

UMAP: supervised vs. semi-supervised
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Part 2 [ Motivation

Motivation

Ensembling helps generalization

Model A ~f Model C

Ensemble

28



Part 2 [ Motivation

Motivation

Form an ensemble model

1. Inoutput space

Model A Model C

Ensemble
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Part 2 [ Motivation

Motivation

Form an ensemble model

1. Inoutput space
2. In weight space (Embedded ML)

Model A - Model I 3 Model C

Ensemble

30



Part2 = Weight Averaging

Weight Averaging

Ensemble by weight averaging

Requirements:

1. Solutions should be functionally diverse % ﬁ % %

31



Weight Averaging

Ensemble by weight averaging

Requirements:

1. Solutions should be functionally diverse

2. Solutions should reside in one basin - +I Barrier

(

32



Weight Averaging [FRelated works

Related works

Weight space averaging

Functionally different solutions r Train

’
4

N

Train

Frankle, Jonathan, et al. "Linear mode connectivity and the lottery ticket hypothesis." International Conference on Machine Learning. PMLR, 2020.
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Weight Averaging [FRelated works

Related works

Functionally different solutions

Weight space averaging

Izmailov, Pavel, et al. "Averaging weights leads to wider optima and better generalization." arXiv preprint arXiv:1803.05407 (2018). 34



Part 2 [ Conjeciure

Is there any way to make different solutions in one basin?

Weight space averaging

Functionally different solutions

35



Part 2 [ Conjeciure

Conjecture

A, B, C, and D are minimas in different

basins with barriers between pairs.

36



Part 2 [ Conjeciure

Conjecture

Taking permutations into account, there is likely

no barrier in the linear interpolation between SGD g
A 5 permutation B

solutions.
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Entezari, Rahim, et al. "The role of permutation invariance in linear mode connectivity of neural networks." arXiv preprint arXiv:2110.06296 (2021). 37



Part 2 [ Conjeciure

Conjecture

Taking permutations into account, there is likely

no barrier in the linear interpolation between SGD

B_

A .B' “permutation
e—
solutions.
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Functionally different solutions

O

Weight space averaging
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Part 2 [ Conjeciure

Permutations in Neural Networks

3! = 6 permutations

39



Part 2 [ Conjeciure

Permutations does not change the function!

(a) Neural network f; (b) Neural network f>

40



Part 2 [ Conjeciure

How to find the appropriate permutation?

41



Conjecture FBrute Force

Permutation by brute force

e ResNet-50 — 10 °°10°

e For comparison, the number of atoms in universe is about 1082

42



Conjecture |Simulated’/Annealing

Permutation by Simulated Annealing

EJ —+— MNIST
= —»— SVHN
:58 CIFAR10
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Conjecture |Simulated’/Annealing

Permutation by Simulated Annealing
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Interpolation a
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Permutation by Simulated Annealing
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Neuron Alignment [FFunctional Difference

Neuron Alignment: Functional Difference

—1

o 1. X s o i N A n
OB =S (it —wf)T- (B + @)) - (Wi - W)

He, Xiaoxi, Zimu Zhou, and Lothar Thiele. "Multi-task zipping via layer-wise neuron sharing." arXiv preprint arXiv:1805.09791 (2018). 46



Neuron Alignment [FFunctional Difference

Neuron Alignment: Functional Difference
MLP
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He, Xiaoxi, Zimu Zhou, and Lothar Thiele. "Multi-task zipping via layer-wise neuron sharing." arXiv preprint arXiv:1805.09791 (2018). 47



Neuron Alignment [FComparison

Neuron Alignment methods: a comparison

MNIST
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Neuron Alignment [FComparison

Neuron Alignment methods: a comparison

MNIST CIFAR10
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Neuron Alignment [Correlation‘Matching

Neuron Alignment: Correlation Matching

Network A Network B

- Resnet-50
- ImageNet
- First layer: 64 filters

50



Neuron Alignment [Correlation‘Matching

Neuron Alignment: Correlation Matching

Network A Network B A aligned to B

Zcorr(Xl(}), Xl(i’)z(i))

51

Li, Yixuan, et al. "Convergent learning: Do different neural networks learn the same representations?." arXiv preprint arXiv:1511.07543 (2015).



Neuron Alignment [FCorrelation"Matching

Neuron Alignment: Correlation Matching

Works for shallow+wide MLPs

2-layer MLP (barrier=0.006)

.
o
1

o
©
1

o
(o)
1

Test accuracy

- Direct interpolation
0.7 1 == Aligned interpolation

6, 02 04 06 08 0,

Jordan, Keller, et al. "Repair: Renormalizing permuted activations for interpolation repair." arXiv preprint arXiv:2211.08403 (2022). 52



Neuron Alignment [FCorrelation"Matching

Correlation Matching breaks for deeper networks

5-layer MLP (barrier=0.086) ResNet18 / CIFAR-10 100 ResNet50 / ImageNet
1.0 :
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Interpolation a

Jordan, Keller, et al. "Repair: Renormalizing permuted activations for interpolation repair." arXiv preprint arXiv:2211.08403 (2022). 53



Neuron Alignment [FCorrelation"Matching

Correlation Matching breaks for deeper networks

5-layer MLP (barrier=0.086) ResNet18 / CIFAR-10 100 ResNet50 / ImageNet
1.0 :
0.8 1
9
@©
5067 --mmooo\ s === Directinterpolation -
® - Aligned interpolation
3 0.4
Q
0.2
0.0 — " - - : - 0.0 — . . : ; .
6 0.2 0.4 0.6 0.8 6, 6 0.2 0.4 0.6 0.8 6,

Interpolation a

But why?

Jordan, Keller, et al. "Repair: Renormalizing permuted activations for interpolation repair." arXiv preprint arXiv:2211.08403 (2022). 54



Correlation Matching F\Variance collapse

Variance collapse

Deep MLP / MNIST

061 " ®  Direct interpolation
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Correlation Matching F\Variance collapse

Variance collapse

Filter 9
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Correlation Matching F\Variance collapse

Variance collapse

Filter 9

57



Correlation Matching F\Variance collapse

Variance collapse

var=1.58 var=2.94

Filter 9

X1+ X
Var(X,) = Var (g)

P
Var(X;) + Var(X3) + 2Cov(X, X5)
4
std?(X;) 4 std?(X3) + 2 - corr(X1, Xo) - std(X;)std(X2)
4
B (std(Xl) S std(X2)>2 (1= corr(Xy, X>))

std( X )std(X5)

2 2 58



Correlation Matching F\Variance collapse

Variance collapse

var=1.58 var=2.94 var=1.18<2.26

Filter 9
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Correlation Matching F\Variance collapse

Variance collapse

var=1.58 var=2.94 var=1.18<2.26

Filter 9

1+ T2
2

Var (z,) = Var ( ) = i(std(x1)2 + std(2)? + Corr(z1, ) - std(zy) - std(zz))

60



Neuron Alignment FREPAIR

REPAIR: Re-estimate Batchnorm statistics

Deep MLP / MNIST
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Jordan, Keller, et al. "Repair: Renormalizing permuted activations for interpolation repair." arXiv preprint arXiv:2211.08403 (2022). 61



Neuron Alignment FREPAIR

REPAIR: Re-estimate Batchnorm statistics

ResNet18 / CIFAR-10
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Jordan, Keller, et al. "Repair: Renormalizing permuted activations for interpolation repair." arXiv preprint arXiv:2211.08403 (2022). 62
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Part 3 [ Data

Research questions

- R1: role of pre-training data

€ Given a target task, which dataset to pre-train?

-  R2: role of pre-training method
€ Given a target task, which pre-train method to choose?

€ supervised ImageNet or contrastive LAION?

64



Part 3 [ Data

Experimental setup

Pre-training
CLIP
LAION, YFCC, WIT, Conceptual captions, Redcaps, Shutterstock

Finetuning

Few-shot: 1/5/10/20/all samples per class

CIFAR100, DTD, CALTECH101, PETS, REAL (domain net), CLIPART (domain net),
CameraTraps, Cassava Leaf Disease, EuroSAT

65



Part 3 [ Data

Pre-training datasets

LAION Conceptual captions

pattern. Muslim mosaic. Turkish, Arabian
tile on a white background. Mosque ...

o . 3 Islamic vector geometric ornaments based on
~, Yellow sandals for women pointy and low traditional arabic art. Oriental seamless
heeled Beatnik Francoise Mustard
»

_ ] 3 Bedrooms Terraced House for sale in
=< Eastbourne Road, Walton, Liverpool,
. Merseyside, L9

Illustration of hand holding the id card.
Vector illustration flat design.

<PERSON>: U. <PERSON> in United States
Army. First <PERSON> appointed to that
position. First, &, so far, only <PERSON>
to serve on Joint Chiefs of Staff. Black
H...

Minimum Wage Barbie

66




Part 3 [ Data

Finetuning datasets

name CIFAR100 DTD REAL CLIPART Camera traps Cassava leaf EuroSAT
(domain net) (domain net) disease
samples 50K 5.6K 172K 172K 58K 21K 27K
classes 100 47 345 345 15 5 10

Panthers

br.«’fk =

Cassava Mosaic Disease

67



Part 3 R1: Role of data distribution

Which dataset to pre-train?

100

Pre-train Datasets:
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Part 3 R1: Role of data distribution

100

. °

Pre-train Datasets:

. B cc3m
X
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Part 3 R1: Role of data distribution

100

. °

Pre-train Datasets:
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Part 3 R1: Role of data distribution

o o o o o
N w EAN (6)] »

Best vs Worst Pre-training Datasets
o
=

Average over 9 downstream datasets

,'I 100 20-shot Finetune Accuracy
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Part 3 R1: Role of data distribution

Redcaps on PETS

100

<

8
48303
%

’ Redcaps2.7m

&
JRDRO

Finetune accuracy [%]

X

1 5 10 20 full (100)
Number of shots
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Redcaps on PETS

100

(0]
o

8
4

I
@

Finetune accuracy [%]
4

N
o

1 5 10 20
Number of shots

full (100)

Role of data distributio

lofoten archipelago by <usr>

- foggy night in the vancouver forest

-l
bubba is so unbelievably cute when she's E duchesse satin wedding guest dress-
sleeping! featuring bonus pockets!

the kids got t-shirts. $° your present condition!

paused the x-men at just the right time. homemade flammkuchen for dinner...

in a field of yellow and green i'm drunk, and this is lucy.

park ny

shot from our airbnb porch view on oia on

dressing up for the family photo <antorin in greece

eerie section of trail on a long-forgotten
country backroad. - long path, catskills my handsome new neighbour
=

completed a small remodel of the half bath.

first timer. such a pretty girl
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Part 3 R1: Role of data distribution

Redcaps on PETS

100

<

—_ Pre-training dataset  Top 20 words in 1M sample of captions
SE, * Shutterstock background, vector, illustration, design, icon, pattern, texture, style, woman,
> concept, hand, color, T, view, template, line, business, logo, card, symbg
% 60 Redcaps day, today, year, time ﬁplam, friend, anyone, picture, baby, guy, week
— L4 home, morning, night; th, way, boy, work
8 YFCC-15m photo, day, park, street, city, picture, view, time, world, year, house, state, center,
Q part, garden, shot, image, building, road, museum
@© LAION-15m photo, stock, image, black, woman, design, set, vector, white, print, home, men,
8 40 blue, dress, art, card, sale, gold, bag, cover
> CC-12m illustration, stock, art, design, photo, image, background, room, vector, house,
E A 4 home, woman, wedding, style, photography, royalty, car, fashion, girl, world
£ CC-3m background, actor, artist, player, illustration, view, woman, man, football, team,
L tree, premiere, city, vector, day, girl, beach, game, hand, people
20 WIT view, church, station, map, house, building, hall, museum, city, location, street,
park, river, state, john, county, town, center, bridge, world
' Table 2: Most common words in captions of pre-training distributions
0
1 5 10 20 full (100)

Number of shots
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Which pre-train method?

100
Y
80 CIFAR100
=
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Supervised vs. CLIP
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Supervised vs. CLIP
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Adding 15x more data?

100 CIFAR100
80 %
S
%)
© 60 ¥
§ 8
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S 40 &
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Pretraining models
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Adding 15x more data?

supervised
100 CIFAR100 100 DTD 100 PETS
. Y
% supervised v Y 8
80 80 80 v
S ¥ 8
>
§ 60 * 60 % 60
3 X
s £ Y * %
5 40 8 40 % 0
[}
£ v I
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Part3 R2: Role of pre-training method

What if we scale to 2B samples?

2B samples
100
100 CIFAR100 DTD
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Part3 R2: Role of pre-training method
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Conclusion

Take away

> Sparsity:
o  There are several motivations for sparity, one is improving generalization.

o  Sparsity has different effects when combined with supervised and semi-supervised training.
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Conclusion

Take away

> Loss landscape:
o  Studying the loss landscape of neural networks has implications on model generalization.
o  Accounting for permutation invariance, barriers can be eliminated.

o New lens to loss landscape: we took the first steps towards understanding ensembles and distributed

training.
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Conclusion

Take away

> Role of data:
o Changing the pre-training dataset leads to noticeable differences in few-shot transfer performance.
o  Specific datasets like shutterstock perform well on almost all studied target tasks.

o Data curation matters. We need 15-2000X more data to compensate for labeling.
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Thanks for your attention



