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Scaling trend

2Bernstein, Liane, et al. "Freely scalable and reconfigurable optical hardware for deep learning." Scientific reports 11.1 (2021): 3144.
https://the-decoder.com/gpt-4-is-1-76-trillion-parameters-in-size-and-relies-on-30-year-old-technology/
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Neural networks at the edge
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https://www.thinkebiz.net/what-edge-computing/



Neural networks at the edge
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Pervasive but limited resources → make AI possible on the edge

Introduction Motivation



Generalization
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In-Distribution vs. Out-Of-Distribution generalization (ID vs. OOD)

ID generalization
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Train Test



Generalization
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In-Distribution vs. Out-Of-Distribution generalization (ID vs. OOD)

ID generalization

- Regularization
- Dropout
- Early stopping

Introduction Generalization

Dataset

Train Test



Generalization
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In-Distribution vs. Out-Of-Distribution generalization (ID vs. OOD)

Zhang, Chongzhi, et al. "Delving deep into the generalization of vision transformers under distribution shifts."CVPR. 2022.

- Transfer learning
- Domain adaptation

Introduction Generalization
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Generalization
of Neural Networks

Parameter Data

Introduction Outline
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Generalization
of Neural Networks

Parameter Data

Sparsity

Make neural networks work at the edge
To improve generalization

Introduction Outline
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Generalization
of Neural Networks

Parameter Data

Loss LandscapeSparsity

Make neural networks work at the edge
To improve generalization

To understand/probe trained networks
ensembles to make neural networks work at the edge
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Generalization
of Neural Networks

Parameter Data

Pre-training
Transfer LearningLoss LandscapeSparsity

Make neural networks work at the edge
To improve generalization

To understand/probe trained networks
ensembles to make neural networks work at the edge

Dynamic environment → dynamic data
Reliable AI applications

Introduction Outline
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Generalization
of Neural Networks

Parameter Data

Pre-training
Transfer LearningLoss LandscapeSparsity

Class-dependent pruning of deep neural networks

Understanding the effect of sparsity on neural networks robustness

Studying the impact of magnitude pruning on contrastive learning 
methods

Neural Network Pruning for Nuclei Instance Segmentation

The Role of Permutation Invariance in Linear Mode 
Connectivity of Neural Networks

REPAIR: Linear Mode Connectivity of Deep Neural 
Networks via Permutation Invariance and 

Renormalization

The Role of Pretraining Data in Transfer Learning

Introduction Outline



Part 1:
Sparsity



Sparsity

“With all things being equal, the simplest explanation tends to be the right one” (William of Ockham, ~1300)

14
Hoefler, Torsten, et al. "Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks." arXiv preprint arXiv:2102.00554 (2021).

Introduction MotivationPart 1 Sparsity



Relation between sparsity and generalization

15

Introduction MotivationPart 1 Sparsity

Does sparsity help/hurt generalization?

Magnitude pruning Lottery Ticket



Effective model capacity
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2. Weight perturbation1. Data corruption

Introduction MotivationPart 1 SparsitySparsity Robustness

Sparsity and Generalization



18

1. Data corruption

Introduction MotivationPart 1 SparsitySparsity Robustness

- Performance on corrupted 
datasets

○ MNIST-C
○ CIFAR10-C
○ CIFAR100-C

Sparsity and Generalization
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2. Weight perturbation1. Data corruption

Introduction MotivationPart 1 SparsitySparsity Robustness

- Add Gaussian noise to each weight

○ zi ~ N ( 𝜇, 𝜔i
2𝜎i

2 )

- Flatness of achieved minima

Image source [Li et al. 2018]
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2.  Weight perturbation

contrary to common belief, sparsity indeed does not hurt network generalization

Timpl, Lukas, et al. "Understanding the effect of sparsity on neural networks robustness." arXiv preprint arXiv:2206.10915 (2022).

Introduction MotivationPart 1 SparsitySparsity Robustness

1. Data corruption

Sparsity and Generalization
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What is the effect of sparsity on learned representations?

Introduction MotivationPart 1 SparsitySparsity Learned Representations
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Dense

Supervised

Learned representations: UMAP

Corti, Francesco, et al. "Studying the impact of magnitude pruning on contrastive learning methods." arXiv preprint arXiv:2207.00200 (2022).

Introduction MotivationPart 1 SparsitySparsity Learned Representations
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GMP 90% One-shot 90%Dense

Supervised

Learned representations: UMAP

Corti, Francesco, et al. "Studying the impact of magnitude pruning on contrastive learning methods." arXiv preprint arXiv:2207.00200 (2022).

Introduction MotivationPart 1 SparsitySparsity Learned Representations



UMAP: what if we change the training algorithm?

25Dense

Supervised

Supervised
Contrastive

Sparsity Learned Representations



UMAP: supervised vs. semi-supervised

26GMP 90% One-shot 90%

Supervised

Supervised
Contrastive

Sparsity Learned Representations



Part 2:
Loss Landscape
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Ensembling helps generalization

Part 2 Motivation

Motivation
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Form an ensemble model

1. In output space

Part 2 Motivation

Motivation
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Form an ensemble model

1. In output space
2. In weight space (Embedded ML)

Part 2 Motivation

Motivation
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Ensemble by weight averaging

Requirements:

1. Solutions should be functionally diverse

Introduction Weight Averaging

Weight Averaging

Part 2
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Ensemble by weight averaging

Requirements:

1. Solutions should be functionally diverse

2. Solutions should reside in one basin

𝜃1

𝜃2
T

½ (𝜃1 + 𝜃2)

𝜃2 Barrier   

Introduction Motivation

Weight Averaging

Part 2 Weight Averaging
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Functionally different solutions

Weight space averaging 

Frankle, Jonathan, et al. "Linear mode connectivity and the lottery ticket hypothesis." International Conference on Machine Learning. PMLR, 2020.

Introduction Motivation

Related works

Part 2 Weight AveragingWeight Averaging Related works
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Functionally different solutions

Weight space averaging 

Izmailov, Pavel, et al. "Averaging weights leads to wider optima and better generalization." arXiv preprint arXiv:1803.05407 (2018).

Introduction Motivation

Related works

Part 2 Weight AveragingWeight Averaging Related works



Is there any way to make different solutions in one basin?
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Introduction MotivationPart 2 Weight AveragingPart 2 Conjecture

Functionally different solutions

Weight space averaging 



Conjecture
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A, B, C, and D are minimas in different 

basins with barriers between pairs.

Introduction MotivationPart 2 Weight AveragingPart 2Part 2 Conjecture



Conjecture

Taking permutations into account, there is likely 

no barrier in the linear interpolation between SGD 

solutions.

37Entezari, Rahim, et al. "The role of permutation invariance in linear mode connectivity of neural networks." arXiv preprint arXiv:2110.06296 (2021).

Introduction MotivationPart 2 Conjecture



Conjecture

38

Functionally different solutions

Weight space averaging 

Introduction MotivationPart 2 Conjecture

Taking permutations into account, there is likely 

no barrier in the linear interpolation between SGD 

solutions.



Permutations in Neural Networks
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3! = 6 permutations

Introduction MotivationPart 2 Conjecture



Permutations does not change the function!
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Introduction MotivationPart 2 Conjecture



How to find the appropriate permutation?

41

Introduction MotivationPart 2 Conjecture



Permutation by brute force
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● ResNet-50 → 10 55109 

● For comparison, the number of atoms in universe is about 1082

Introduction MotivationConjecture Brute Force



Permutation by Simulated Annealing
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Introduction MotivationPart 2 ConjectureConjecture Simulated Annealing

θ2



Permutation by Simulated Annealing
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Introduction MotivationPart 2 ConjectureConjecture Simulated Annealing

Barrier = 0.8



Permutation by Simulated Annealing
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Introduction MotivationPart 2 ConjectureConjecture Simulated Annealing

θ2



Neuron Alignment: Functional Difference

46He, Xiaoxi, Zimu Zhou, and Lothar Thiele. "Multi-task zipping via layer-wise neuron sharing." arXiv preprint arXiv:1805.09791 (2018).

Introduction MotivationPart 2 ConjectureNeuron Alignment Functional Difference



Neuron Alignment: Functional Difference

47He, Xiaoxi, Zimu Zhou, and Lothar Thiele. "Multi-task zipping via layer-wise neuron sharing." arXiv preprint arXiv:1805.09791 (2018).

Introduction MotivationPart 2 ConjectureNeuron Alignment Functional Difference

SA

FD
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Neuron Alignment methods: a comparison

Introduction MotivationNeuron Alignment Comparison
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Neuron Alignment methods: a comparison

Introduction MotivationConjecture Brute ForceNeuron Alignment Comparison
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Neuron Alignment: Correlation Matching

- Resnet-50
- ImageNet
- First layer: 64 filters 

Network A Network B

Introduction MotivationConjecture Brute ForceNeuron Alignment Correlation Matching
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Li, Yixuan, et al. "Convergent learning: Do different neural networks learn the same representations?." arXiv preprint arXiv:1511.07543 (2015).

Network A Network B A aligned to B

Neuron Alignment: Correlation Matching

Introduction MotivationConjecture Brute ForceCorrelation MatchingNeuron Alignment Correlation Matching
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Works for shallow+wide MLPs

Neuron Alignment: Correlation Matching

Jordan, Keller, et al. "Repair: Renormalizing permuted activations for interpolation repair." arXiv preprint arXiv:2211.08403 (2022).

Introduction MotivationConjecture Brute ForceConjecture Correlation MatchingNeuron Alignment Correlation Matching
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Correlation Matching breaks for deeper networks

Jordan, Keller, et al. "Repair: Renormalizing permuted activations for interpolation repair." arXiv preprint arXiv:2211.08403 (2022).

Introduction MotivationConjecture Brute ForceNeuron Alignment Correlation Matching

 Barrier
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Correlation Matching breaks for deeper networks

Jordan, Keller, et al. "Repair: Renormalizing permuted activations for interpolation repair." arXiv preprint arXiv:2211.08403 (2022).

Introduction MotivationConjecture Brute ForceNeuron Alignment Correlation Matching

 Barrier

But why?
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Variance collapse

Correlation Matching Variance collapse
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Variance collapse

𝒙2

Filter 9

𝒙1

Correlation Matching Variance collapse
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Variance collapse

𝒙2 𝒙𝛼

Filter 9

𝒙1

Correlation Matching Variance collapse
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Variance collapse

𝒙2 𝒙𝛼

Filter 9 var=1.58 var=2.94

𝒙1

Correlation Matching Variance collapse
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Variance collapse

𝒙2 𝒙𝛼
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Correlation Matching Variance collapse
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Variance collapse

𝒙2 𝒙𝛼

Filter 9 var=1.58 var=2.94 var=1.18 < 2.26

𝒙1

Correlation Matching Variance collapse



REPAIR: Re-estimate Batchnorm statistics

61Jordan, Keller, et al. "Repair: Renormalizing permuted activations for interpolation repair." arXiv preprint arXiv:2211.08403 (2022).

Introduction MotivationConjecture Brute ForceNeuron Alignment REPAIR



REPAIR: Re-estimate Batchnorm statistics

62Jordan, Keller, et al. "Repair: Renormalizing permuted activations for interpolation repair." arXiv preprint arXiv:2211.08403 (2022).

Introduction MotivationConjecture Brute ForceNeuron Alignment REPAIR
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➔ R1: role of pre-training data 

◆ Given a target task, which dataset to pre-train?

➔ R2: role of pre-training method 

◆ Given a target task, which pre-train method to choose?

◆ supervised ImageNet or contrastive LAION? 

Introduction Motivation

Research questions

Part 3 Data



2

1
Pre-training
CLIP 

LAION, YFCC, WIT, Conceptual captions, Redcaps, Shutterstock

Finetuning
Few-shot: 1/5/10/20/all samples per class

CIFAR100, DTD, CALTECH101, PETS, REAL (domain net), CLIPART (domain net), 
CameraTraps, Cassava Leaf Disease, EuroSAT

65

Introduction Motivation

Experimental setup

Part 3 Data
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LAION Conceptual captions

Introduction Motivation

Pre-training datasets

Part 3 Data
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name CIFAR100 DTD REAL 
(domain net)

CLIPART 
(domain net)

Camera traps Cassava leaf 
disease

EuroSAT

samples 50K 5.6K 172K 172K 58K 21K 27K

 classes 100 47 345 345 15 5 10

Introduction Motivation

Finetuning datasets

Part 3 Data
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CI
FA

R1
00

Introduction MotivationPart 3 R1: Role of data distribution

Which dataset to pre-train?
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Introduction Motivation

CI
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Part 3 Pre-training data distributionPart 3 R1: Role of data distribution
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Introduction Motivation

CI
FA

R1
00
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Introduction MotivationPart 3 Pre-training data distributionPart 3 R1: Role of data distribution

Average over 9 downstream datasets
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Part 3 R1: Role of data distribution

Redcaps on PETS
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Part 3 R1: Role of data distribution

Redcaps on PETS
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Part 3 R1: Role of data distribution

Redcaps on PETS
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Introduction MotivationPart 3 R2: Role of pre-training method

CIFAR100

Which pre-train method?
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Introduction MotivationPart 3 Pre-training methodPart 3 R2: Role of pre-training method

Supervised vs. CLIP



77

Introduction MotivationPart 3 Pre-training methodPart 3 R2: Role of pre-training method

Supervised vs. CLIP
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Introduction MotivationPart 3 Pre-training methodPart 3 R2: Role of pre-training method

Adding 15x more data?
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Introduction MotivationPart 3 Pre-training method

supervised

Adding 15x more data?

supervised

Part 3 R2: Role of pre-training method
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2B samples

Introduction Motivation

What if we scale to 2B samples?

Part 3 Pre-training methodPart 3 R2: Role of pre-training method
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supervised

Introduction Motivation

What if we scale to 2B samples?

Part 3 Pre-training method

2B samples

Part 3 R2: Role of pre-training method



Take away
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➢ Sparsity:

○ There are several motivations for sparity, one is improving generalization.

○ Sparsity has different effects when combined with supervised and semi-supervised training.

Conclusion



Take away
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➢ Loss landscape:

○ Studying the loss landscape of neural networks has implications on model generalization.

○ Accounting for permutation invariance, barriers can be eliminated.

○ New lens to loss landscape: we took the first steps towards understanding ensembles and distributed 

training.

Conclusion



Take away
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➢ Role of data:

○ Changing the pre-training dataset leads to noticeable differences in few-shot transfer performance.

○ Specific datasets like shutterstock perform well on almost all studied target tasks.

○ Data curation matters. We need 15-2000X more data to compensate for labeling.

Conclusion



Thanks for your attention
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