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Abstract

The growing ubiquity of deep neural networks in daily life highlights the
need to address the challenges and limitations they face when deployed
on edge devices. These devices impose constraints on resources, accessi-
bility, and scalability, and are subject to dynamic changes in their working
environment. This makes the optimization and generalization of neural
networks a critical area of research. In this thesis, we adopt an empirical
science approach, treating deep learning as an observable and experimental
phenomenon. Our primary goal is to understand when neural networks
work and when they do not, and we focus on examining the optimization
and generalization of neural networks in the context of edge environments.

As we strive to optimize neural network performance under resource
constraints, we explore the delicate balance between sparsity and robustness.
Our investigation uncovers that incorporating sparsity bolsters network
robustness without compromising accuracy, even in the face of edge con-
straints. To address data and class imbalance challenges, we devise an
end-to-end sparsity method that demonstrates remarkable effectiveness in a
variety of real-world edge applications.

We then further improve our understanding of the vital part that pa-
rameter efficiency contributes to the model generalization, particularly in
edge environments. By examining the complexity of the neural network
loss landscape, we gain valuable insights into the geometry of solutions in
the neural networks’ loss landscape. Our investigations not only help us
understand the loss landscape of neural networks but also illuminate how
different solutions are connected. Moreover, we propose the permutation in-
variance conjecture, which offers a novel perspective on the shape of the loss
landscape. We provide theoretical and empirical support for our conjecture
on permutation invariance in the loss landscape and introduce the REPAIR
method to enhance the performance of aligned interpolated networks.

We then move towards a more comprehensive understanding of neural
network generalization by exploring a complementary and crucial facet: the
role of data in the generalization of neural networks. We concentrate on the
crucial role that pre-training data distribution plays in transfer performance,
taking into account the unique challenges present in edge environments
e.g., limited access to labeled data, constantly changing data sources, and
resource constraints. By addressing these challenges, we aim to enhance
transfer learning, enabling neural networks to adapt more effectively to

vii



the dynamic conditions of edge environments. Our findings reveal that
variations in pre-training data distributions and as well as methods can lead
to differences in downstream transfer accuracy, especially in the few-shot
transfer regime. We discover that leveraging more pre-training data may
help bridge the performance gap between different training methods, such
as supervised and contrastive approaches.

We hope that this research contributes to a deeper understanding of neural
networks at the edge and provides valuable insights for future work on
neural network optimization and deployment in edge environments. The
empirical findings and methodologies presented in this thesis can serve as a
foundation for the development of more efficient, scalable, and robust deep
learning models, ultimately enabling their successful integration into edge
devices across a wide range of applications.
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Kurzfassung

Die zunehmende Verbreitung von tiefen neuronalen Netzen im täglichen
Leben macht deutlich, dass die Herausforderungen und Einschränkungen,
mit denen sie beim Einsatz auf Edge-Geräten konfrontiert sind, angegan-
gen werden müssen. Diese Geräte unterliegen Beschränkungen in Bezug
auf Ressourcen, Zugänglichkeit und Skalierbarkeit und sind dynamischen
Veränderungen in ihrer Arbeitsumgebung ausgesetzt. Dies macht die Op-
timierung und Verallgemeinerung neuronaler Netze zu einem wichtigen
Forschungsbereich. In dieser Arbeit wird ein empirisch-wissenschaftlicher
Ansatz verfolgt, bei dem Deep Learning als ein beobachtbares und ex-
perimentelles Phänomen betrachtet wird. Unser primäres Ziel ist es, zu
verstehen, wann neuronale Netze funktionieren und wann sie nicht funk-
tionieren, und wir konzentrieren uns auf die Untersuchung der Optimierung
und Generalisierung neuronaler Netze im Kontext von Edge-Umgebungen.

In unserem Bestreben, die Leistung neuronaler Netze bei eingeschränkten
Ressourcen zu optimieren, untersuchen wir das empfindliche Gleichgewicht
zwischen dünnbesetzten Matrizen (Sparsity) und Robustheit. Unsere Unter-
suchung zeigt, dass die Einbeziehung von Sparsity die Robustheit des
Netzwerks erhöht, ohne die Genauigkeit zu beeinträchtigen, selbst an-
gesichts der von Edge-Umgebung bedingten Beschränkungen. Um die Her-
ausforderungen von Daten- und Klassenungleichgewicht zu bewältigen,
entwickeln wir eine End-to-End-Sparsity-Methode, die in einer Vielzahl von
realen Edge-Anwendungen bemerkenswert effektiv ist.

Anschließend verbessern wir unser Verständnis der essentiellen Rolle,
welche die Parametereffizienz bei der Modellgeneralisierung spielt, ins-
besondere in Edge-Umgebungen. Durch die Untersuchung der Komplexität
der Loss Landscape neuronaler Netze gewinnen wir wertvolle Erkennt-
nisse über die Geometrie der Lösungen in der Loss Landscape neuronaler
Netze. Unsere Untersuchungen helfen uns nicht nur, die Loss Landscape
neuronaler Netze zu verstehen, sondern beleuchten auch, wie verschiedene
Lösungen miteinander verbunden sind. Darüber hinaus schlagen wir die
Permutationsinvarianz-Vermutung vor, die eine neue Perspektive auf die
Form der Loss Landscape bietet. Wir liefern theoretische und empirische
Unterstützung für unsere Vermutung zur Permutationsinvarianz in der
Loss Landscape und stellen die REPAIR-Methode vor, um die Leistung von
interpolierten Netzen zu verbessern.

Anschließend gehen wir zu einem umfassenderen Verständnis der Gener-

x



alisierung neuronaler Netze über, indem wir eine ergänzende und entschei-
dende Facette untersuchen: die Rolle der Daten bei der Generalisierung
neuronaler Netze. Wir konzentrieren uns auf die entscheidende Rolle, die die
Verteilung der Daten vor dem Training für die Leistungsfähigkeit nach einem
Transfer spielt, und berücksichtigen dabei die einzigartigen Herausforderun-
gen, die in Edge-Umgebungen bestehen: begrenzter Zugang zu gelabelten
Daten, sich ständig ändernde Datenquellen und Ressourcenbeschränkun-
gen. Durch die Bewältigung dieser Herausforderungen wollen wir das
Transfer-Lernen verbessern und neuronale Netze in die Lage versetzen, sich
effektiver an die dynamischen Bedingungen von Edge-Umgebungen anzu-
passen. Unsere Ergebnisse zeigen, dass Variationen in der Verteilung der
Pre-Training-Daten und -Methoden zu Unterschieden in der Downstream-
Transfergenauigkeit führen können, insbesondere bei dem Schema für Few-
Shot Transfer Wir stellen fest, dass die Nutzung von mehr Pre-Trainingsdaten
dazu beitragen kann, die Leistungslücke zwischen verschiedenen Train-
ingsmethoden, wie z. B. überwachte und kontrastive Ansätze, zu schließen.

Wir hoffen, dass diese Forschung zu einem tieferen Verständnis von neu-
ronalen Netzwerken in Edge-Umgebungen beiträgt und wertvolle Erkennt-
nisse für zukünftige Arbeiten zur Optimierung und zum Einsatz neuronaler
Netzwerke in Edge-Umgebungen liefert. Die in dieser Arbeit vorgestellten
empirischen Erkenntnisse und Methoden können als Grundlage für die
Entwicklung effizienterer, skalierbarer und robuster Deep-Learning-Modelle
dienen und letztlich deren erfolgreiche Integration in Edge-Geräte für eine
Vielzahl von Anwendungen ermöglichen

xi





Acknowledgment

This PhD thesis, a testament to several years of diligence and perseverance, is
not a solitary achievement. Instead, it’s an embodiment of the love, support,
and guidance I have received from many pivotal people in my life. I pause
here to express my profound gratitude towards them.

First and foremost, to my amazing wife, Neshat. Your ceaseless love and
support have been my North Star, guiding me throughout this journey.
During the stormy days and the sunny ones, you’ve stood by my side,
sharing in both my struggles and my triumphs. This endeavor would not
have been possible without your patience and your unwavering belief in me.
I am deeply grateful for your love and for your devoted partnership.

I am enormously grateful to my PhD supervisor, Prof. Olga Saukh. Your
wisdom and mentorship have been instrumental throughout this journey.
You’ve guided me not only in my academic work but also taught me how
to tackle challenges with a critical mind and a determined spirit. The soft
skills I’ve learned from you are just as valuable as the technical ones, and
for that, I am deeply appreciative.

This thesis is lovingly dedicated to my late father, a man who stood
as a shining example of true integrity. His lessons on doing what’s right
continue to guide me every step of the way. His sudden loss lingers —
an unexpected call one night, by his side the very next day, and merely a
week later, the unforgiving grip of COVID had tragically taken him from
us. Despite this profound sorrow, I find solace in the belief that he would
have been brimming with pride at this achievement. I ardently hope that
my work serves as a fitting homage to his cherished memory.

My mother deserves special recognition for her enduring support that
began from my earliest days in elementary school. Her limitless love has
been the bedrock upon which I’ve built my academic pursuits. Her strength
and kindness continue to inspire me, and I’m deeply thankful for her. A
special mention to my brothers, my family, and my friends who have been
my pillars of strength throughout this journey.

I owe a tremendous amount of gratitude to my collaborators, especially
Dr. Behnam Neyhabur and Dr. Hanie Sedghi. Working with you has been
an incredible learning experience. Your generous sharing of knowledge
and your dedication to high-level research have profoundly enriched my
professional development. Your mentorship has been invaluable, and I am
deeply thankful for the opportunity to learn and grow with you.

Last but not least, I dedicate this work to the Woman-Life-Freedom move-
ment and to a young hero, Kian Pirfalak, whose life was cut short at the age
of 9 by the Iranian regime. His soul serves as a poignant reminder of the
struggles for freedom and justice in my country. His story inspires me and
strengthens my commitment to contribute towards a better world through

xiii



my research.
This journey, while long and sometimes challenging, has been one of the

most rewarding experiences of my life. Every person I’ve mentioned here
has played a significant role in shaping my path. As I embark on the next
chapter of my life, I carry their love, support, and wisdom with me. To all
of you, my heartfelt thanks.

xiv



Contents

1 Introduction 1
1.1 Resource demands of neural networks . . . . . . . . . . . . . . 3

1.2 Parameter efficiency of neural networks . . . . . . . . . . . . . 4

1.2.1 Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Data efficiency of neural networks . . . . . . . . . . . . . . . . 12

1.3.1 Data augmentation . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Pre-tranining and transfer learning . . . . . . . . . . . 15

1.4 Thesis outline and contributions . . . . . . . . . . . . . . . . . 16

2 Pruning and Generalization 19
2.1 Sparsity and robustness of neural networks . . . . . . . . . . . 20

2.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Robustness to weight perturbation . . . . . . . . . . . . 22

2.1.3 Robustness to data corruption . . . . . . . . . . . . . . 24

2.1.4 Robustness to adversarial attacks . . . . . . . . . . . . 24

2.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Impact of supervision on sparsity . . . . . . . . . . . . . . . . 25

2.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Impact of sparsity on distribution of PIEs . . . . . . . . 28

2.2.3 Impact of sparsity on representation quality . . . . . . 29

2.2.4 Impact of sparsity on sample difficulty . . . . . . . . . 29

2.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Class-dependent pruning of deep neural networks . . . . . . 31

2.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Evaluation of the proposed method . . . . . . . . . . . 37

2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Deep neural network pruning for nuclei instance segmentation 38

2.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.2 Segmentation and regression models . . . . . . . . . . 41

2.4.3 Network-wide and layer-wise pruning . . . . . . . . . 42

2.4.4 Evaluation of the sparse instance segmentation model 43

2.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xv



Contents

3 Loss Landscape and Generalization 48
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Mode connectivity of neural networks . . . . . . . . . . . . . . 51

3.2.1 Loss barrier . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Empirical investigation of barriers . . . . . . . . . . . . . . . . 53

3.3.1 Effect of width . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Effect of depth . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.3 Effect of task difficulty and architecture choice . . . . . 55

3.4 Role of invariance in loss barriers . . . . . . . . . . . . . . . . . 56

3.4.1 Permutation invariance . . . . . . . . . . . . . . . . . . 57

3.5 Permutation invariance conjecture . . . . . . . . . . . . . . . . 58

3.6 A theoretical result . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Direct empirical evaluation . . . . . . . . . . . . . . . . . . . . 59

3.8 Search algorithms for finding a winning permutation . . . . . 60

3.8.1 Simulated Annealing (SA) . . . . . . . . . . . . . . . . . 60

3.8.2 Functional Difference (FD) . . . . . . . . . . . . . . . . 62

3.8.3 Optimal Transport Fusion (OPT) . . . . . . . . . . . . . 62

3.8.4 Correlation of activations . . . . . . . . . . . . . . . . . 63

3.9 Identifying the problem: Variance Collapse . . . . . . . . . . . 64

3.9.1 Why does the variance collapse phenomenon occur? . 66

3.10 REPAIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.10.1 Closed-form approximate variant . . . . . . . . . . . . 67

3.10.2 Forward-pass exact variant . . . . . . . . . . . . . . . . 68

3.11 Effectiveness of REPAIR . . . . . . . . . . . . . . . . . . . . . . 70

3.11.1 REPAIR for ImageNet . . . . . . . . . . . . . . . . . . . 70

3.11.2 Split data training . . . . . . . . . . . . . . . . . . . . . 71

3.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Pre-training and Generalization 74
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.1 Multimodal architectures . . . . . . . . . . . . . . . . . 78

4.1.2 Multimodal datasets . . . . . . . . . . . . . . . . . . . . 79

4.2 The role of pre-training data in transfer learning . . . . . . . . 82

4.3 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.1 What is the impact of different pre-training data sources
on transfer learning? . . . . . . . . . . . . . . . . . . . . 86

4.5.2 Which data distribution is better for transfer learning? 86

4.5.3 How much pre-training contributes to downstream
performance as opposed to training from scratch? . . . 87

4.5.4 Do well-curated pre-training datasets lead to better
transfer? . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xvi



Contents

4.5.5 How does the effectiveness of ImageNet pre-training
compare to that of LAION pre-training? . . . . . . . . 89

4.5.6 How does the downstream performance improve as
more data is available for pre-training? . . . . . . . . . 90

4.5.7 Effect of pre-training loss . . . . . . . . . . . . . . . . . 91

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Conclusion and Outlook 96

Bibliography 98

xvii





1 Introduction

In recent years the success of neural networks has been a significant driving
force behind the rapid growth of artificial intelligence. The capabilities of
deep learning models in image recognition were first demonstrated almost
10 years ago (Krizhevsky et al., 2012), paving the way for many subsequent
advances. One example is the Transformer architecture (Vaswani et al., 2017),
which has become the foundation for numerous state-of-the-art models in
natural language processing such as GPT (Radford et al., 2018).

The impressive achievements of neural networks can be largely attributed
to advancements in training techniques and optimization algorithms, along
with the significant role of computation and large-scale datasets. As the
size and complexity of neural network models grow, the computational
resources required for their training and operation increase substantially.
Powerful hardware such as GPUs and TPUs, and efficient distributed com-
puting techniques have made it possible to train these large-scale models.
Additionally, the availability of vast, high-quality datasets has been crucial,
as these models typically perform better with more data. The data serves as
the ’fuel’ for the learning process, enabling the models to recognize patterns,
make predictions, and improve their performance. This symbiosis between
improved algorithms, advanced computation capabilities, and large-scale
datasets has been a driving force in the success of neural networks.

During training of a neural network, an optimization algorithm is used
to find the best set of parameters that minimize the training error (Duchi
et al., 2011; Kingma & Ba, 2014; Robbins & Monro, 1951; Tieleman & Hinton,
2012). However, the goal is not only to achieve low training error but also to
achieve good generalization performance on unseen data (LeCun et al., 2015;
Neyshabur et al., 2017; C. Zhang et al., 2017). The generalization error, also
known as the test error, is the error that the model makes on new, unseen
data. In general, the goal is to find a set of parameters that results in low
training and test errors. However, in practice, it is often the case that models
with low training error do not necessarily have low test error.

In contrast to classical machine learning, where increasing model com-
plexity results in overfitting (low generalization), neural networks trained
with a large number of parameters compared to the amount of training
data still demonstrate good generalization performance (Neyshabur et al.,
2014; C. Zhang et al., 2017). Overfitting occurs when a model memorizes
the training data, rather than learning the underlying patterns, which leads
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1 Introduction

to poor performance on new, unseen data. The study of generalization can
be divided into two main components: in-distribution generalization and
out-of-distribution generalization.
In-distribution generalization (ID) refers to the neural network’s ability to
perform well on new, unseen data that is drawn from the same distribution
as the training data (Arora et al., 2018). One of the main challenges in training
neural networks is ensuring that they generalize well to in-distribution data.
This is particularly difficult due to a large number of parameters in modern
neural network architectures, that can lead to overfitting if not properly
regularized.

There are several approaches to improving in-distribution generalization
in neural networks. One popular approach is to use regularization tech-
niques, such as weight decay, dropout (Srivastava et al., 2014), and early
stopping (Raskutti et al., 2014), which help to prevent overfitting by reduc-
ing the capacity of the model. In practice, we split the dataset into three
parts, including train, validation, and test set, and use the validation set to
tune the learning parameters such as the early stopping threshold. Data
augmentation is another approach that increases the diversity of the training
set and reduces overfitting chances (Shorten & Khoshgoftaar, 2019). Addi-
tionally, the choice of architecture is essential, with Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) being well-suited
for image and sequential data, respectively, and achieving good general-
ization performance on in-distribution data (Hochreiter & Schmidhuber,
1997; LeCun et al., 2015). In-distribution generalization can also benefit from
robust architectures, such as those achieved through adversarial training (I. J.
Goodfellow et al., 2014). Techniques like transfer learning, which involve
pre-training a neural network on a large dataset and then fine-tuning it on a
smaller target dataset, have also proven effective at improving in-distribution
generalization.
Out-of-distribution generalization (OOD), on the other hand, refers to a
scenario where the joint distribution of inputs and outputs differs between
training and test sets (also referred to as distribution shift), i.e., Ptrain(x, y) ̸=
Ptest(x, y). Neural networks learn to identify patterns and relationships in
the training data, but when faced with new data from a different distribution,
their performance may suffer (Hendrycks & Gimpel, 2016). This issue arises
mostly because neural networks are highly expressive models capable of
fitting the training data closely, which is advantageous for in-distribution
data. However, this characteristic also makes the network sensitive to the
peculiarities of training data, potentially hindering its ability to generalize
well to new data with distinct properties (Hendrycks & Gimpel, 2016). Poor
out-of-distribution generalization can also result from a lack of diversity
in the training data. Therefore, a diverse training dataset is crucial when
training a neural network.
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1 Introduction

Understanding the loss landscape of neural networks plays a crucial
role in improving generalization. The loss landscape is a high-dimensional
representation of the relationship between the model’s parameters and its
objective function, i.e., the loss, providing insights into the optimization
process. The shape of the loss landscape can be affected by several factors,
including the model architecture, the amount, quality, and distribution of
the training data, and the choice of the optimization algorithm, and can have
a significant impact on the generalization performance of neural networks.
For instance, a flat loss landscape, which is characterized by many local
minima that have similar training error values, is associated with more
robust and generalizable solutions, as small perturbations in the model
parameters result in less significant changes in the loss (Keskar et al., 2016).
Consequently, developing optimization algorithms that favor flatter minima
can lead to models with improved generalization capabilities.

On the other hand, a sharp loss landscape, which is characterized by a
single global minimum with a low training error and many high error values
around it, is generally considered to be less favorable for generalization.
This is because it forces the optimization algorithm to converge to a single
solution, which may not generalize well to unseen data. Understanding the
loss landscape allows for the identification of areas with high loss values,
facilitating the design of techniques that avoid these regions and ultimately
leading to better-performing models.

1.1 Resource demands of neural networks

Neural networks are computationally intensive due to their complex archi-
tecture and the amount of data required for training (LeCun et al., 2015). A
neural network is composed of multiple interconnected layers of neurons,
which perform mathematical operations on the input data to produce an out-
put. During training, the network adjusts the weights of these connections
based on the input data to improve its accuracy. This process of adjusting
the weights requires significant computational resources, including memory,
processing power, and storage.

Resource demands of neural networks arise from their complexity and the
massive amount of data needed for training. The number of neurons, layers,
and connections in a neural network can be massive, particularly in deep
neural networks with many layers (I. Goodfellow et al., 2016). Each layer
adds more complexity to the network, requiring additional computations
and memory. This complexity can also increase the time required for training
and inference, making it challenging to use neural networks for real-time or
time-sensitive applications.

Neural networks also require extensive training data to learn patterns and
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1 Introduction

relationships within the data (C. Zhang et al., 2017). The size of the training
data can range from hundreds to millions or even billions of samples, de-
pending on the complexity of the task and the size of the network. This large
amount of data requires significant storage and processing power, particu-
larly for training neural networks with larger and more complex datasets.
High computational requirements limit the scalability and accessibility of
neural networks. In addition, the high resource demands of neural networks
can limit their deployment on resource-constrained devices, such as mobile
phones or embedded systems, where energy efficiency and performance
are vital. As an illustration, the MegatronLM has 8.3B parameters (Shoeybi
et al., 2019), while T5 has 11B parameters (Raffel et al., 2020). The T-NLG
model has even more parameters, with 17B (Rosset, 2020), and the current
state-of-the-art model for natural language processing, GPT-3 (Brown et al.,
2020) from OpenAI, contains a staggering 175 Billion Parameters (no avail-
able data for the number of parameters of GPT-4). Training and utilizing
these models is achievable solely via extensive parallelization, necessitating
the use of thousands of GPU units. This leads to considerable economic and
ecological consequences. For example, the expense to train one instance of
GPT-3 can be around 12 million (Wiggers, 2020).

1.2 Parameter efficiency of neural networks

One promising direction to circumvent the resource demands of neural net-
works is to enforce parameter efficiency. In Convolutional Neural Networks
(CNNs), instead of connecting every pair of neurons between every two lay-
ers, we prune connections and keep only the local surrounding connections
based on the convolution kernel size, padding, and dilation. The resulting
Locally Connected Network (Ngiam et al., 2010) contains unique filters for
each output neuron, specializing in different spatial regions. Another step
of parameter efficiency is utilized by weight sharing across filters to provide
translational equivariance (Hoefler et al., 2021). Figure 1.1 shows these two
steps for convolutional operators as sparse fully-connected operators.

Previous research has explored various methods to decrease the size, train-
ing and inference cost of large-scale DNNs while maintaining performance
levels, including quantization, knowledge distillation, neural architecture
search, low-rank compression, and sparsity. The main focus of this thesis is
to employ sparsity and therefore next section looks into sparsity in detail.
For details on other methods refer to Entezari and Saukh (2019) and Hoefler
et al. (2021).
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Fully connected Locally connected Convolutional Sparse convolutional

designed 

sparsity

weight 

sharing

sparsification

Figure 1.1: Convolutional Neural Network as an example of parameter efficiency (Hoefler
et al., 2021) One-dimensional convolutional operators can be seen as sparse
fully-connected operators for a single input and output channel. Additional
sparsity can also be applied on top of the convolutional network.

1.2.1 Sparsity

Figure 1.1 shows that further parameter efficiency can also be introduced
in CNNs by utilizing sparsity. Sparsity refers to having a high proportion
of zero values in a matrix or tensor. The motivation behind sparsity in
neural networks has evolved over time. Initially, the focus was on using
model sparsification to enhance generalization (LeCun et al., 1990). There
are various methods to encourage sparsity, including L1 regularization and
incorporating sparsity constraints into the optimization objective (Olshausen
& Field, 1997; Tibshirani, 1996). However, due to the increasing computa-
tional demands of neural networks, recent sparsity research (also known
as pruning) has shifted toward reducing the cost of inference and, more
recently, minimizing the cost of training (Frantar & Alistarh, 2023; Gale
et al., 2019; Nikdan et al., 2023). Sparse neural networks can potentially
offer reduced computational complexity and memory requirements, as well
as increased efficiency (Han, Pool, et al., 2015). Last but not least, some
researchers look into sparsity in order to gain a deeper understanding of
the learning process in neural networks.

What can be sparsified?

Hoefler et al. (2021) provides a nice overview to answer this question. Fig-
ure 1.2 shows different options for sparsification of deep neural networks,
per model or per example. Two main approaches to model sparsity include
weight sparsity (also referred to as unstrcutured), and neuron sparsity.
Weight sparsity leverages the empirical finding that preserving the output
requires only a handful of salient weights within a layer, hence removing
those weights below a certain score (Frankle & Carbin, 2019b; Guo et al.,
2016; Han, Mao, et al., 2015; Hassibi & Stork, 1992; LeCun et al., 1989).
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Weight sparsity has gained significant traction in the literature due to its
ease of implementation and ability to achieve high pruning ratios while
maintaining high accuracy (Frankle & Carbin, 2019b). The parameter budget
for weight sparsification could be considered globally (e.g., in magnitude
pruning this translates to ranking all parameters and removing the smallet
parameters globally), or layer-wise. If the parameter budget is set globally,
high levels of sparsity are achieved by removing most of the weights at a
larger layer with more parameters e.g., fully-connected layer. Nonetheless,
certain layers with a minimal amount of parameters may be entirely main-
tained, as their impact on the parameter budget is negligible. These layers
can possess substantial FLOPs, for instance, in an initial convolution layer
where a small 3× 3 kernel is applied to the entire image. Kusupati et al.
(2020) induces sparsity while learning pruning thresholds thereby obtaining
a non-uniform sparsity budget. Weight sparsity generally necessitates spe-
cialized hardware to expedite inference. Recently Mishra et al. (2021) and
Zhou et al. (2021) have introduced pre-defined sparsity patterns supported
by specialized GPUs to address this issue.

Pruning whole neurons and neuron-like components (such as filters,
channels, and heads; also known as structured sparsity) effectively reduces
the network size, resulting in decreased storage demands and enhanced real-
time performance on any device (J. Chen et al., 2020; Dong, Huang, et al.,
2017; Y. He et al., 2019; Kang & Han, 2020). Z. Liu et al. (2018) observed that
pruning filters might be less effective if carried out layer-by-layer without
taking into account the overall resulting structure.

In the context of structured sparsity, (Qu, 2022) explore on-device adaption,
where the model, once deployed on an Internet of Things (IoT) device,
continues to learn and adapt using local data. (Qu et al., 2022) Enforces
structure-wise partial parameter updates to the last output layer of a DNN
to achieve reasonable few-shot classification accuracy while still ensuring
rapid generalization to unfamiliar tasks.
Ephemeral sparsity constitutes a secondary class of sparsification techniques
that are exclusively used during the calculation of each example and is
only relevant to that specific example. Structural sparsification is most
apparent in activations e.g., ReLU operator results in natural sparsification.
Random activation sparsity can also be achieved through techniques like
dropout (Hoefler et al., 2021).

Another set of ephemeral sparsity elements pertains to the gradient-based
training values. The objective of gradient sparsification is to induce sparsity
in parameter gradients during training. In conditional computation, the model
determines a sparse computational pathway for each instance dynamically.
This is accomplished by directing the computation through the network
without engaging all of the weights (Mallya & Lazebnik, 2018; Wortsman
et al., 2020).
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Figure 1.2: Classification of the sparsity methods (Hoefler et al., 2021).

Mixture of Experts (MoE) is another example of conditional computation
that achieved impressive success in natural language processing and com-
puter vision (Mustafa et al., 2022). In a mixture of experts (MoE) model,
multiple sub-models or experts are combined to make predictions. Each
expert is designed to handle a specific aspect of the input data distribution.
The predictions of the experts are combined using a gating network, which
decides which expert to use for a given input. Sparsity is an important
concept in MoE because it allows the gating network to make efficient use of
the available experts. The gating network outputs a sparse vector, meaning
that only a small subset of the experts are selected for a given input. This
is achieved by using a threshold or other mechanism to determine which
experts are most appropriate for a given input.
Regularization-based sparsity applies regularization techniques that en-
courage small weights or small activations. This is accomplished by adding
a regularization term to the loss function during training, which penalizes
large weights or activations. The regularization term effectively imposes a
constraint on the model’s parameters and forcing them to remain close to
zero. By doing so, the regularization term encourages the model to focus on
a smaller subset of features or neurons, effectively inducing sparsity in the
network. Examples of regularization techniques used for inducing sparsity
include L0, L1, and L2 regularization.

When to sparsify?

Model sparsity often comes with a pruning schedule. Figure 1.3 shows three
different classes of pruning schedules.
Sparsity after training. The prevalent sparsification schedule, often referred
to as one-shot, employs a conventional dense training method that converges
after T iterations (green area in Figure 1.3). Subsequently, the fully trained
model is sparsified. The resulting sparse model typically undergoes fine-
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Figure 1.3: Overview of sparsification schedules (Hoefler et al., 2021).

tuning to achieve improved accuracy (yellow area in Figure 1.3).
Sparsity during training. This schedule starts the sparsification of the model
before it has been trained to convergence. Compared to sparsification after
training, it is cheaper (fewer training iterations) because it enforces sparsity
while training is done. Regularization techniques are among this category.
Sparsification during training could lead to less efficient convergence and is
often more brittle to configure via hyperparameters (Ghosh & Tumer, 1994).
To circumvent this challenge one may delay the starting point of pruning to
later iterations (Corti et al., 2022) or use gradual schedules instead of fixed
ones (Zhu & Gupta, 2017).
Sparse training. This schedule begins with a sparse model and trains it
while potentially adding and removing elements during the training process.
Evci et al. (2020) show that fully-sparse training can achieve ResNet-50

performance comparable to fully-dense training, albeit with extra iterations.
This method is particularly beneficial for training high-dimensional models
that would not fit into edge devices using dense representations.

1.2.2 Ensembles

An alternative approach to promoting parameter efficiency in neural net-
works is by utilizing ensemble learning. Ensemble learning combines multi-
ple models to create a more accurate prediction or classification. By com-
bining multiple models, an ensembled model can reduce the impact of
individual model errors and provide a more reliable prediction or classifica-
tion (Breiman, 1996, 2001; Hansen & Salamon, 1990). Ensemble learning can
be used in a variety of machine learning applications, including regression,
and classification. The prediction performance of an ensemble depends on
both the individual performance of its members and their diversity (Diet-
terich, 2000; Z. Lu et al., 2010). Diversity in an ensemble can be achieved
when the predictions of its members do not coincide on all the samples.
Intuitively, when the members of an ensemble are diverse, they tend to make
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independent errors, which can be beneficial for ensemble performance. This
is because when the errors of diverse classifiers are aggregated, they tend to
cancel each other out, leading to an improved ensemble prediction (Berend
& Kontorovich, 2015; Ortega et al., 2022).

There are different types of ensemble learning methods, including bag-
ging (Breiman, 1996, 2001), boosting (Freund, Schapire, et al., 1996), and
stacking (Wolpert, 1992). Bagging entails training several models indepen-
dently and then merging their results through a majority vote. Conversely,
boosting involves training models in a sequential manner, with each succes-
sive model concentrating on the mistakes made by the prior one. Stacking
incorporates training multiple models and utilizing their outputs as inputs
for a higher-level model. (C. Zhang & Ma, 2012).

All ensemble methods encourage diversity among their individual models
either implicitly or explicitly, e.g., bagging and boosting implicitly encourage
diversity by creating different configurations. Deep ensembles also resort to
implicit techniques such as random initialization (Lakshminarayanan et al.,
2017; Wen et al., 2020), tweaking the optimizer (Foret et al., 2020; Maddox
et al., 2019; Wenzel et al., 2020; R. Zhang et al., 2019), or employing different
hyperparameter settings (Wenzel et al., 2020; Wortsman et al., 2022).

Weight-space ensembling and output-space ensembling are two main
approaches to ensemble learning for neural networks.
Output-space ensembling involves merging the predictions of multiple
models to generate a final prediction. This can be achieved using techniques
such as voting. One downside of this approach is that it requires saving
and retrieving all individual models during inference, which can be a chal-
lenge on resource-constrained devices. This can limit the feasibility of using
output-space ensembling in certain applications that require lightweight
and efficient models.
Weight-space ensembling of neural networks refers to a technique in which
multiple models are trained independently, and their weights are combined
to produce a single model with improved performance. Unlike output-space,
weight-space ensembling merges all models and therefore only one model
is used for inference. Weight-space ensembling is done by averaging the
weights of the independently trained models. This could be done either by
averaging the weights after training is finished or during the training by
using dropout. When a neural network uses dropout, every individual data
point is only used to fit a random subset of the neurons. This can make the
neural network more like an ensemble model of sub-networks (Srivastava
et al., 2014). By combining the weights of multiple models, weight-space
ensembling can reduce the risk of overfitting and improve the generalization
of the final model. Training deep neural networks can benefit from the
regularization provided by weight-space ensembling. weight-space ensem-
bling requires the base models to reside in one basin (Chapter 3. provides
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the definition of basin based on Neyshabur et al. (2020a)). However, the
optimization problem of training neural networks is nonconvex and can
have multiple local minima, with each basin representing a different local
minimum in the loss function. This can make it challenging to ensemble
different models. Recent research has shed light on the properties of the
loss landscape in neural network training. For instance, Liang et al. (2018)
showed that the landscape is characterized by a large number of saddle
points that can trap optimization algorithms, while Garipov et al. (2018)
found that there exist regions in the loss landscape where a large number of
solutions with similar loss values can be found. Neyshabur et al. (2020b)
observe that fine-tuned models optimized independently from the same
pre-training lie in the same basin of the loss landscape.
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Figure 1.4: Ensemble Learning in neural networks based on mode connectivity. To create
an ensemble, we need 1) functionally diverse solutions 2) All solutions
need to reside in one basin. Frankle et al. (2020) show that naive weight
averaging between two models trained from different initialization would
end up in different basins, resulting in a low accuracy ensemble (Fig-
ure 1.4a). Neyshabur et al. (2020b) observed that fine-tuned models
optimized independently from the same pre-training lie in the same
basin of the loss landscape (Figure 1.4c). Frankle et al. (2020) showed
that two SGD solutions will end up in one basin if their training trajec-
tory is shared up to K iterations, where the value of K depends on both
architecture and dataset (Figure 1.4d, Figure 1.4b). Stochastic Weight Av-
eraging improves the performance of a single training trajectory. However,
the solutions are not diverse for ensembling (Figure 1.4e). Entezari et al.
(2021) conjecture that taking the permutation symmetries into account,
we can make two different SGD solutions in one basin ( Figure 1.4f).

Figure 1.4 illustrates six different efforts for ensemble learning in neural
networks. Frankle et al. (2020) show that naive weight averaging between
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two models trained from different initialization would end up in differ-
ent basins, resulting in a low accuracy ensemble (see Figure 1.4a). Weight
averaging during a single training trajectory (calculating the average of the
weights over a certain number of iterations or epochs) has been demon-
strated to reside in one basin (Figure 1.4e) and enhance the performance of
models (Izmailov et al., 2019; Szegedy et al., 2016). However, because such
individual models are trained from one single initialization, they lack the
high diversity required for efficient ensembling. Similarly, Frankle et al.
(2020) extended the results by (Neyshabur et al., 2020b) and showed that
two SGD solutions will end up in one basin if their training trajectory is
shared up to K iterations, where the value of K depends on both architecture
and dataset (task complexity). Although the resulting models belong to a
single basin, the average outcome does not enhance the performance of the
individual models. Chapter 3 describes the importance of symmetries in
neural networks and how permutation invariances help to make ensembles
of models trained from different initialization (Figure 1.4f).

1.3 Data efficiency of neural networks

Data serves as the vital foundation for neural networks, providing the
essential input needed for training and optimizing these powerful models.
The importance of data for neural networks cannot be overstated, as it
serves as the foundation upon which these models learn and improve
their performance (LeCun et al., 2015). As the quantity and quality of data
increase, the potential for neural networks to achieve remarkable results
also increases drastically. From an optimization viewpoint, data is crucial
in allowing neural networks to learn and fine-tune their parameters to
minimize error and maximize accuracy (I. Goodfellow et al., 2016).

Neural networks are often described as being "data hungry," which speaks
to the large volumes of data required to train these models effectively (Sun
et al., 2017). This demand for data presents challenges in terms of both
labelling and processing and highlights the importance of having robust
datasets to ensure the success of neural networks in real-world applications.

Quality is another essential aspect of data for neural networks, as the
performance of these models is heavily influenced by the quality of the input
(C. Zhang et al., 2017). High-quality data provides a strong foundation for
neural networks to effectively capture underlying relationships within the
data, resulting in better generalization and performance. Conversely, low-
quality data, which may be characterized by noise, inconsistencies, or biases,
can negatively impact the learning process, causing the neural network to
produce suboptimal or even harmful outcomes e.g., in a facial recognition
system if a neural network is trained on a biased dataset that predominantly
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contains images of individuals from specific ethnic backgrounds, the system
may perform poorly on recognizing faces from underrepresented groups.
This can lead to misidentification, false accusations, or discrimination (Tor-
ralba & Efros, 2011; D. Wang et al., 2016).

The importance of data quality for neural networks becomes even more
critical when considering edge devices, particularly in the context of the
Internet of Things (IoT). IoT devices generate vast amounts of data, which
can serve as a valuable resource for training neural networks. However,
utilizing IoT data presents its own set of challenges. One notable issue
is the distribution shift, as IoT devices operate in various environments
under diverse conditions, causing the data collected to reflect this diversity.
Consequently, the data distribution may change over time, leading to inaccu-
racies and inconsistencies in models trained on this data. Furthermore, data
collected by IoT devices is often noisy and lacks accurate labeling, which
can complicate the training process for neural networks (D. C. Nguyen et al.,
2021; Tuli et al., 2019).

Several techniques have been developed to overcome these challenges,
including data augmentation, pre-training, and then transfer learning. These
methods aim to reduce the impact of distribution shifts by ensuring that
models are trained on data that is representative for real-world distribution.
Additionally, continuous monitoring of the distribution of data and adapta-
tion of models is necessary to ensure that they remain accurate over time. In
the following, we cover these methods in more detail.

1.3.1 Data augmentation

State-of-the-art models often rely on intensive data augmentation methods.
This is heavily pronounced in image classification applications. Despite the
well-established effectiveness of these methods, the underlying mechanism
behind how these transformations operate is not well-understood. It is be-
lieved that data augmentation is effective as it simulates realistic samples
from the true data distribution. As a result, it has been argued that augmen-
tation strategies are reasonable since the transformed data closely resembles
the original data, thus effectively increasing the quantity of training data
available (Bellegarda et al., 1992).

Recent research results suggest that augmentation strategies are effective
because they increase the diversity of samples seen by the model (Cubuk
et al., 2018). Different examples of data augmentation include but are not
limited to adding Gaussian noise (Ford et al., 2019; Lopes et al., 2019),
erasing random patches of the training samples during training (DeVries
& Taylor, 2017; Park et al., 2019; Zhong et al., 2020), and Mixup (H. Zhang
et al., 2017). While each of these techniques can be effective in certain
contexts, they have different strengths and weaknesses. Gaussian noise is a
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simple technique that is easy to implement and has been shown effective in
improving model robustness. However, it can sometimes result in overfitting
if the noise is too strong. Erasing random patches can be particularly useful
when working with large datasets, as it can help prevent overfitting by
forcing the model to focus on important features. However, it can sometimes
result in underfitting if too many patches are removed. The main idea behind
MixUp is to create new training examples by blending two random images
and their corresponding labels, thus encouraging the model to learn smooth
transitions between classes and improving generalization. Mixup has been
shown to be effective in improving model generalization. However, it can be
computationally expensive, particularly when working with large datasets
as it requires generating a new training sample for each pair of existing
training samples, resulting in a significant increase in the size of the training
set.

Gontijo-Lopes et al. (2020) argue that data augmentation improves model
performance by increasing both the affinity between training samples and
the diversity of the training set. Affinity quantifies how augmentation shifts
data with respect to the decision boundary of the clean baseline model.
Affinity (Gontijo-Lopes et al., 2020): Let Dtrain and Dval be training and
validation datasets drawn IID from the same clean data distribution, and let
D′val be derived from Dval by applying a stochastic augmentation strategy a,
once to each image in Dval , D′val = {(a(x), y) : ∀(x, y) ∈ Dval }. Further let
m be a model trained on Dtrain and A(m, D) denote the model’s accuracy
when evaluated on dataset D. The Affinity; T [a; m; Dval ], is given by:

T [a; m; Dval ] =
A
(
m, D′val

)
A (m, Dval )

(1.1)

The affinity of one represents no shift. A smaller number suggests that the
augmented data is out-of-distribution for the model. It is worth noting that
affinity is easy to measure as it requires only clean training of the model in
question.

Diversity, on the other hand, measures how hard augmented data is to fit.
Diversity (Gontijo-Lopes et al., 2020):. Let a be an augmentation and D′train
be the augmented training data resulting from applying the augmentation a.
Further, let Ltrain be the training loss for a model m, trained on D′train. . We
define the Diversity, D [a; m; Dtrain ] as follows:

D [a; m; Dtrain ] =
ED′train

[Ltrain ]

EDtrain [Ltrain ]
(1.2)

Gontijo-Lopes et al. (2020) evaluate these metrics on several popular data
augmentation techniques and show that explicitly optimizing along axes of
both Affinity and Diversity yields better performance. These metrics can be
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used to guide the development of new data augmentation techniques and to
better understand the impact of data augmentation on model performance.

1.3.2 Pre-tranining and transfer learning

Pre-training and transfer learning are two complementary techniques in
the field of deep learning that have revolutionized the way we approach
machine learning problems. Pre-training involves training a model on a large
dataset, which may consist of labeled or unlabeled data, to learn general
features and representations. In the context of computer vision, pre-training
is often performed on large labeled datasets, such as ImageNet (Deng et al.,
2009; Krizhevsky et al., 2017) or recently on a large multimodal dataset, such
as LAION(Schuhmann et al., 2022; Schuhmann et al., 2021). The pre-trained
model can then be fine-tuned on a specific task using a smaller labeled
dataset, leveraging the transfer learning paradigm.

Transfer learning improves generalization in machine learning models
by allowing them to build upon the knowledge acquired during the pre-
training phase. Intuitively, by learning from a large and diverse dataset,
the model is exposed to a wider variety of patterns, which helps it to
better generalize to unseen data. This is reminiscent of Diversity in data
augmentation (Section 1.3.1). Neyshabur et al. (2020b) showed that feature
re-use is one role player in successful transfer. One may also consider pre-
training as a special case of data augmentation (Section 1.3.1), where the
pre-training data covers data shifts with respect to the decision boundary of
the model trained on the target task (Affinity).

Transfer learning is especially beneficial when the target task has limited
labeled data, as the model can efficiently use the prior knowledge to achieve
better performance compared to training from scratch. Transfer learning
has demonstrated its effectiveness in various domains, including computer
vision, natural language processing, and reinforcement learning (J. Howard
& Ruder, 2018; Yosinski et al., 2014).

The effect of pre-training on the loss landscape shape is significant, as it
results in more stable optimization landscapes compared to models trained
from scratch. Pre-trained models exhibit a flatter and more convex loss land-
scape, which facilitates gradient-based optimization and helps the model
to converge to a better local minimum (H. Li et al., 2018). Neyshabur et al.
(2020b) explored the loss landscape of models that are trained from both
pre-trained and randomly initialized weights. Their observations reveal that
there is no notable performance barrier between the two instances of models
that are initialized using pre-trained weights. This suggests that pre-trained
weights effectively guide the optimization process towards a flat basin in
the loss landscape (Figure 1.4c).

Geirhos et al. (2020) also showed that large-scale pre-training makes
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classifiers less vulnerable to shortcut learning. In shortcut learning the
model learns to exploit certain features or patterns in the data that allow it
to achieve good performance on the training set but may not generalize well
to unseen data. In other words, the model takes "shortcuts" by relying on
spurious correlations in the data rather than learning the true underlying
structure or meaningful features that are relevant to the task at hand (Geirhos
et al., 2020).

Transfer learning can be generally categorized into zero-shot, few-shot,
and full-shot learning, depending on the amount of labeled data available for
the target task. In zero-shot learning, a model is expected to generalize to the
target task without any labeled examples from that task (Xian et al., 2017).
This is usually achieved by learning shared semantic representations across
tasks, such as word embeddings in natural language processing or shared
visual features in computer vision. The zero-shot transfer gives the ability to
test the goodness of representations without finetuning. CLIP (Radford et al.,
2021) and Flamingo (Alayrac et al., 2022) are two successful examples that
have shown impressive results in zero-shot transfer learning tasks. Few-shot
learning is particularly useful in scenarios where data is scarce, labeling
data is expensive, or difficult e.g., edge environments. Full-shot learning,
on the other hand, involves using a larger labeled dataset for the target
task, allowing the model to fine-tune and achieve better performance on the
target task.

1.4 Thesis outline and contributions

In this thesis, we investigate the recent advancements in enhancing the
generalization performance of neural networks on edge devices. Neural
networks require substantial resources for both training and inference. This
presents a challenge in edge environments where computational constraints
are imposed by the device, yet data evolves over time, or deployment condi-
tions may diverge from the measured data used in training. Our objective is
to understand the deep learning phenomenon and identify strategies for im-
proving the performance of neural networks for such resource-constrained
settings.

In this journey, we primarily adopt an empirical science approach, treating
deep learning as an observable and experimental phenomenon. As we
navigate through real-world applications on the edge, we aim to identify
consistent patterns in deep learning, transform these observations into
conjectures, and carefully evaluate them through experimentation.

Chapter 2: In this chapter we dig into sparsity as a promising direction to
achieve parameter efficiency of neural networks at the edge.
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1. We investigate the relationship between sparsity and robustness of
neural networks with respect to weight perturbation, data corruption,
and adversarial attacks. We show that, up to a certain sparsity achieved
by increasing network width and depth while keeping the network
capacity fixed, sparsified networks consistently match and often out-
perform their initially dense versions. This section is based on the
following paper:
Timpl, L.*, Entezari, R.*, Sedghi, H., Neyshabur, B., Saukh, O. (2021), Under-
standing the effect of sparsity on neural networks robustness, ICML Workshop
on "Over-parameterization: Pitfalls and Opportunities.
(shared first co-authorship, proposed the main idea, supervised the
first author master student).

2. We look into the impact of different sparsity techniques on the repre-
sentation learned by deep neural networks trained with different loss
functions (supervised vs. contrastive self-supervised). We show that at
high sparsity levels, contrastive learning results in a higher number
of misclassified examples relative to models trained with traditional
cross-entropy loss. This section is based on the following paper:
Corti, F.*, Entezari, R.*, Hooker, H., Bacciu, D., Saukh, O. (2022), Studying
the impact of magnitude pruning on contrastive learning methods, ICML
Workshop on "Hardware Aware Efficient Training
(shared first co-authorship, supervised the first author master student).

3. Motivated by the applications of neural networks, we proposed a
new loss function to train neural networks to compensate for data
imbalance (i.e., when the number of labeled instances of one class
considerably outweighs the number of labeled instances of the other
class) and class imbalance (i.e., higher number of false positives may
be tolerable, yet the number of false negatives must stay low). This
section is based on the following paper:
Entezari, R., Saukh, O. (2020), Class-dependent pruning of deep neural
networks, Second Workshop on Machine Learning on Edge in Sensor Systems
(SenSys-ML)
(the main author, proposed the main idea, design and running of
experiments, and wrote parts of the paper).

4. We also investigate the impact of different sparsity techniques (i.e.,
layer-wise and network-wide magnitude pruning), on the nuclei in-
stance segmentation performance in medical images. This section is
based on the following paper:
Mahbod, A.*, Entezari, R.*, Ellinger, I, Saukh, O. (2022), Neural Network
Pruning for Nuclei Instance Segmentation in Hematoxylin & Eosin-Stained
Histological Images, MICCAI Workshop on Applications of Medical AI
(shared first co-authorship, proposed the main idea, design and run-
ning of experiments, close collaboration with domain experts).
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Chapter 3: As discussed in Chapter 1, studying the loss landscape of neu-
ral networks helps to improve generalization of these models. In this chapter,
we explore the connectivity of the minimas based on the definition of the
basin and investigate the impact of overparameterization on the formation
of the loss landscape. We further study the symmetries in the loss landscape
of neural networks and conjecture that by taking permutation invariance
into account, the loss landscape can be simplified significantly resulting in a
linear mode connectivity between SGD solutions. We show how extensive
empirical attempts fall short of refuting it and provide a preliminary theo-
retical result to support our conjecture. Moreover, we identify the "variance
collapse" phenomenon in interpolated networks and introduce an algorithm
to address this issue, referred to as REPAIR.

This chapter is based on the following papers:

1. Entezari, R., Sedghi, H., Saukh, O., Neyshabur, B. (2022), The Role of Per-
mutation Invariance in Linear Mode Connectivity of Neural Networks, Inter-
national Conference on Learning Representations
(the main author, proposed the main idea, design and running of
experiments, and wrote parts of the paper).

2. Jordan, K., Sedghi, H., Saukh O., Entezari, R., Neyshabur, B. (2023), RE-
PAIR: Linear Mode Connectivity of Deep Neural Networks via Permutation
Invariance and Renormalization, International Conference on Learning Rep-
resentations
(discussions and design of experiments, wrote parts of the paper).

Chapter 4: In Chapter 4, we will have a closer look at the role of data
in improving the generalization of neural networks. Specifically, we in-
vestigate the impact of pre-training data distribution on transfer learning
performance. Furthermore, motivated by recent advances in large-scale mul-
timodal pre-training, we compare the pre-training loss function (supervised
vs. contrastive semi-supervised) in few-shot and full-shot transfer perfor-
mance on multiple vision tasks. This chapter is based on the following
paper:

1. Entezari, R., Wortsman, M., Saukh O., Sedghi, H., Schmidt, L. (2023), The
Role of Pre-training Data in Transfer Learning, ICLR Workshop on Multi-
modal Representation Learning
(the main author, proposed the main idea, design and running of
experiments, and wrote parts of the paper).

Chapter 5: In this chapter, we conclude and discuss limitations and outline
future research directions.
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Edge devices are often deployed in diverse environments with different
conditions, such as varying temperatures. Therefore data collected by edge
devices can be shifted over time. The data collected by edge devices may
be shifted e.g., sensors might malfunction over time due to factors such as
high temperature or the distribution of the gathered data might change over
time.

In addition, this data is often noisy, incomplete, or corrupted due to
factors like sensor inaccuracies, communication errors, or environmental
influences. These reasons motivate the implementation of robust machine
learning models that can handle different variations, tolerate noise and still
provide accurate predictions or decisions.

In this chapter, we first introduce sparsity as one way to run neural
networks on edge devices and review some background on different sparsity
techniques. We also explore the interplay between sparsity and robustness
to answer does sparsity degrade or improve model robustness? (Section 2.1). We
then examine the impact of various learning techniques e.g., supervised,
contrastive on the generalization capabilities of sparse neural networks
(Section 2.2).

Driven by edge applications, we concentrate on two inherent challenges
frequently encountered in real-world situations. Firstly, real-world data typ-
ically exhibit a long-tailed distribution, where a small number of classes
make up the majority of data points, while numerous other classes contain
significantly fewer samples (data imbalance). Secondly, in many edge applica-
tions, it is often acceptable to have a higher number of false positives during
model training and performance optimization. However, it is crucial to
maintain a low number of false negatives, such as in early warning systems
(class imbalance). We provide an end-to-end sparsity method by proposing
parameterized loss function to fight data imbalance and class imbalance
(Section 2.3).

Edge computing offers improved privacy protection compared to cloud-
based solutions, as user data typically remains on the device. This is par-
ticularly important for sensitive applications like those in the medical field.
Furthermore, executing AI-based solutions on the cloud requires substan-
tial bandwidth, which may be scarce in developing and underdeveloped
countries. We focus on the application of sparse neural networks for med-
ical imaging, showcasing the potential of edge computing in addressing
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real-world challenges faced by healthcare professionals. We highlight the
significance of our sparsity-driven approach in medical image segmentation
and explain how sparsity improves generalization (Section 2.4).

2.1 Sparsity and robustness of neural networks

Related literature refers to robustness as the network generalization ability to
small shifts in the distribution that humans are usually robust to. There is a
growing body of work studying methods for building robust models. Recent
studies (Recht et al., 2019; Shankar et al., 2020) found that image classification
models show a consistent accuracy drop when evaluated on ImageNet (Deng
et al., 2009) and ImageNetV2 (Recht et al., 2019), while humans achieve
the same accuracy. Another line of research aims at minimizing the worst-
case expected error over a set of probability distributions by applying
distributionally robust optimization (Duchi et al., 2020; Sagawa et al., 2020;
Shafieezadeh-Abadeh et al., 2015). A similar line of work focuses on finding
models that have low performance drop on adversarial examples (Biggio &
Roli, 2018; Madry et al., 2019).

Hooker et al. (2020) showed that model sparsity, and to a smaller extent
quantization, result in tremendous robustness degradation. At the same time,
Golubeva et al. (2021) found that wider networks of the same capacity (same
number of parameters) yield better performance. Model compression leads
simultaneously to sparser and lower capacity networks, yet the contribution
of both effects is mixed. Understanding the impact of these effects on
model robustness in isolation is crucial when optimizing machine learning
models for resource-constrained devices. In this section, we try to answer
the following question:

What is the effect of sparsity on model robustness? Does sparsity degrade or
improve model robustness?

2.1.1 Methodology

We hypothesize that sparsity alone does not hurt model robustness when
the network capacity is fixed and provide empirical evidence to support
this hypothesis in a number of settings. We run our study on a range of
robustness tests (weight perturbations, data corruptions, adversarial exam-
ples), network architectures (MLPs, VGG and ResNets), datasets (MNIST,
CIFAR-10, CIFAR-100), and evaluate the overall and per class network per-
formance. We observe that for randomly initialized models with a static
sparsity pattern applied before or after training, network sparsification does
not hurt or even improves robustness to a certain sparsity compared to a
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dense network of the same capacity. Both robustness and precision deterio-
rate concurrently at extremely high sparsity levels, owing to the weakened
connections between the network’s layers. We show that our hypothesis
holds when introducing sparsity by increasing network width and depth
in separate experiments, applied before and after training. These findings
show that a rapid robustness drop caused by network compression observed
in the literature is due to a reduced network capacity rather than sparsity.

Experimental Framework

Robustness measures We evaluate the impact of sparsity on model per-
formance with respect to weight perturbations (von Oswald et al., 2021),
data corruptions (Hendrycks & Dietterich, 2019), and natural adversarial
examples (Hendrycks et al., 2021).

1. Weight perturbation. Similarly to von Oswald et al., 2021, we perturb
model weights by applying Gaussian noise zi ∼ N (µ, w2

i σ2
i ) in propor-

tion to the magnitude of each weight wi, i ∈ L, and then measure the
difference in the loss δL = Ez[L(wi + z)−L(wi)]. Accuracy drop due
to model perturbation is related to the flatness of the loss landscape
around the obtained optimum. Robustness to weight perturbation
could also represent a proxy for quantization error. This error is intro-
duced in neural network compression by weight quantization in the
literature (Novac et al., 2021).

2. Corrupted data. We apply numerous algorithmically generated cor-
ruptions, similar to the ones evaluated in Hooker et al., 2020 (e.g.,
blur, contrast, pixelation) to all datasets used in this paper. This al-
lows us to investigate how sensitive the sparsified models are to data
corruption of different severity which humans are oblivious to. Our
corrupted datasets are MNIST-C Mu and Gilmer, 2019, CIFAR10-C
and CIFAR100-C Hendrycks and Dietterich, 2019.

3. Natural adversarial examples. We use Torchattacks (H. Kim, 2020) to
generate a diverse range of adversarial attacks for different combina-
tions of mentioned architectures and datasets. This include FGSM (I. J.
Goodfellow et al., 2014), BIM (Kurakin et al., 2016), APGD (Croce &
Hein, 2020), and PGD (Madry et al., 2019).

Sparsification methods. Existing literature covers multiple ways to make
use of sparsity during and after model training including static and dynamic
sparsity (e.g., β-Lasso (Neyshabur, 2020b)), iterative hard thresholding (e.g.,
Lottery Ticket Hypothesis with various pruning strategies (Frankle & Carbin,
2019b; Renda et al., 2020)) and others. Sparsification without changing
the number of parameters was investigated in (Golubeva et al., 2021). In
their study, static sparsity showed the most prominent impact on network

21



2 Pruning and Generalization

performance and is thus adopted in this work. We sparsify a network while
preserving its capacity by changing the network’s width or depth. When
sparsifying by increasing width, we leverage the approach introduced in
Golubeva et al., 2021: every layer of the network is sparsified by removing
weights at random in proportion to the layer size, using a static mask
generated at initialization. This approach is referred to as static sparsity.
We build on its publicly available implementation (Golubeva et al., 2021).
Sparsifying by increasing network depth involves duplicating layers and
then applying a static random mask to sparsify the weight tensors. When
sparsifying by increasing depth, we consider MLP with 29 hidden units
in each layer, and add layers of the same size. For VGG and ResNet we
build architecture families VGG11, VGG13, VGG16 and ResNet18, ResNet34,
ResNet50 all enjoying the default width of 64.
Sparsification schedules. In addition to static sparsity applied prior to
network training, we also investigate network pruning after training by re-
moving a certain amount of weights with the lowest magnitude to match the
required sparsity level. Note that no finetuning is applied. When applying
sparsity, we evaluate both the overall model performance and its perfor-
mance in the most sensitive class. We follow the methodology introduced in
Hooker et al., 2020 i.e., evaluate the change to class level recall compared to
the overall model accuracy.
Datasets and architectures. The datasets used in the experiments include
MINST (LeCun & Cortes, 2010), CIFAR-10 (Krizhevsky et al., 2009), and
CIFAR-100) (Krizhevsky et al., 2009). We fix the number of weights in each
network architecture (one layer MLP, VGG16 (Simonyan & Zisserman, 2015),
ResNet18 (K. He et al., 2015)) throughout all experiments, by increasing
the width or depth and introducing the proper corresponding sparsity. See
sparsification methods for more details. We use one layer MLP with 27 hidden
units, VGG with 11 layers, and ResNet18 as base architectures. We refer to
these vanilla architectures as to 100 %-networks before sparsification. Note
that for both ResNet and VGG, our vanilla implementation uses the layer
width of 16 as the base architecture, which is lower than the width of 64

used in the original architecture. We use width to set the number of output
channels for the first layer and use the same width ratios as the respective
vanilla architectures for the following layers. All networks were trained
using SGD with a momentum of 0.9.

2.1.2 Robustness to weight perturbation

We first investigate the networks that were sparsified while growing the
width to keep their capacity fixed. Figure 2.1 shows that as we move towards
higher sparsity levels, the test performance first increases then decreases in
extreme sparsity levels. We note that such increase is happening earlier for

22



2 Pruning and Generalization

020406080100
Remaining Weights [%]

20

40

60

80

100

Ac
cu

ra
cy

 [%
] dataset

MNIST
CIFAR10
CIFAR100
std_dev
0.0
0.25
0.5

a) One layer MLP

020406080100
Remaining Weights [%]

20

40

60

80

100

Ac
cu

ra
cy

 [%
] dataset

MNIST
CIFAR10
CIFAR100
std_dev
0.0
0.25
0.5

b) VGG11

020406080100
Remaining Weights [%]

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
] dataset

MNIST
CIFAR10
CIFAR100
std_dev
0.0
0.25
0.5
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Figure 2.1: Robustness to weight perturbations, sparsification by increasing width (Timpl
et al., 2021). We add multiplicative Gaussian noise zi ∼ N (µ, w2

i σ2
i ) to each

weight and evaluate model performance. We observe that as we move towards
higher sparsity levels, the performance first increases then decreases in extreme
sparsity levels. We note that such increase is happening earlier for simpler tasks
like MNIST. This performance improvement indicates a flatter loss landscape
around the minima suggesting better generalization.

020406080100
Remaining Weights [%]

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

dataset
MNIST
CIFAR10
CIFAR100
severity
0.0
1.0
2.0
4.0

a) One layer MLP

020406080100
Remaining Weights [%]

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

dataset
MNIST
CIFAR10
CIFAR100
severity
0.0
1.0
2.0
4.0

b) VGG11

020406080100
Remaining Weights [%]

40

60

80

100

Ac
cu

ra
cy

 [%
]

dataset
MNIST
CIFAR10
CIFAR100
severity
0.0
1.0
2.0
4.0

c) ResNet18

Figure 2.2: Robustness to data corruption, sparsification by increasing width (Timpl
et al., 2021). We evaluate the performance of the models on corrupted datasets
MNIST-C, CIFAR10-C, and CIFAR100-C. We observe that as we move towards
higher sparsity levels, the performance first increases and then decreases in
extreme sparsity levels. We note that such an increase is happening earlier for
simpler tasks like MNIST.

simpler tasks like MNIST. We observe that sparse configurations are indeed
in flatter regions of weight space as δL increases more slowly with δzi. This
suggests better robustness and generalization around the minima (Jiang
et al., 2019; Pittorino et al., 2020). Each point in this plot shows the mean
over five networks trained from different initializations. When sparsification
is applied while increasing network depth, the maximum accuracy, and
robustness are achieved for smaller depth values in all experiments. Note
that keeping a network connected while increasing its depth, in contrast
to width, becomes difficult with higher sparsity. For results on increasing
depth refer to Timpl et al. (2021). The outcome across all experiments
consistently suggests that sparsification alone does not undermine network
robustness to weight perturbations as long as sufficient network connectivity
is maintained.
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Figure 2.3: Robustness to adversarial attacks. Sparsification by increasing width
(Timpl et al., 2021). Robustness to all adversarial attacks (BIM (Kurakin
et al., 2016), APGD (Croce & Hein, 2020), PGD (Madry et al., 2019),
FFGSM (I. J. Goodfellow et al., 2014)) is improved as we have less re-
maining weights and decreases for extreme sparsity levels where overall
network accuracy (clean) drops.

2.1.3 Robustness to data corruption

Figure 2.2 evaluates the performance of the models on corrupted datasets
MNIST-C (Mu & Gilmer, 2019), CIFAR10-C (Hendrycks & Dietterich, 2018),
and CIFAR100-C (Hendrycks & Dietterich, 2018). We observe that as we
move towards higher sparsity levels, the test performance first increases and
then decreases in extreme sparsity levels. We note that such an increase is
happening earlier for simpler tasks like MNIST. Each point in Figure 2.2 is
the mean performance over three trained networks. For each network, we
randomly sample 1000 examples from a dataset and add five noise samples
in each run. On CIFAR10-C and CIFAR100-C our evaluation considers
corruption severity of two and four as classified by Hendrycks and Dietterich,
2019. For detailed results on individual corruption types as well as achieved
performance of networks sparsified by increasing depth refer to Timpl et al.
(2021). We note that VGG networks experience convergence issues as the
network sparsity approaches 10% due to lacking connectivity between layers.
This is not the case for MLP and ResNet which also converge for lower
percentage of remaining weights. We attribute these differences to the power
of skip connections in ResNet and low overall tested network depths (1,2,4
and 8) for MLP.

2.1.4 Robustness to adversarial attacks

Figure 2.3 shows the robustness of sparsified networks when applying
adversarial attacks to perturb test data. We observe a consistent trend for
robustness to all adversarial attacks (BIM (Kurakin et al., 2016), APGD (Croce
& Hein, 2020), PGD (Madry et al., 2019), FGSM (I. J. Goodfellow et al.,
2014)). Similar to perturbed model weights and corrupted data, as we have
less remaining weights, test performance for adversarial examples is first
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improved and then decreases for extreme sparsity levels where the overall
(clean) network accuracy drops. Dense VGG networks trained on MNIST
show the highest accuracy decline in the presence of all attacks, while
sparsification helps to improve adversarial robustness.

We also extend our results for sparsification after training (one-shot).
Our results indicate a similar trend to the experiments with static sparsity
applied at initialization i.e., model sparsification often helps to improve
robustness compared to a dense mode and the performance decreases in
extreme sparsity levels. For plots depicting these results refer to (Timpl et al.,
2021).

2.1.5 Discussion

In this section, we hypothesized that sparsity, while keeping the number of
parameters fixed, does not hurt network robustness. We provide experimen-
tal evidence to support this claim based on several standard architectures,
datasets, sparsification methods, and measures of robustness. Our obser-
vation is that network sparsification often helps to improve robustness
compared to a dense model, yet the benefits decline together with the over-
all model accuracy for high sparsity levels. This is due to the increasingly
loose connectivity between layers which complicates optimization. Since net-
work capacity rather than sparsity causes accuracy and robustness drop in
compressed models, designing pruning methods that treat network capacity
and sparsity separately can lead to better sparsification methods. In addition,
our work emphasizes the need for training procedures that better support
sparse operations, which would allow for faster and more memory-efficient
training of sparse networks.

2.2 Impact of supervision on sparsity

Hooker et al. (2019) demonstrated that network pruning disproportionately
affects different classes, meaning that some examples are more easily forgot-
ten than others. These examples consist of data points in the distribution’s
long tail, those with incorrect or imprecise labels, or those with multiple la-
bels, among others. Given the uneven effects of pruning, examining diverse
learning algorithms becomes crucial for ensuring robust network perfor-
mance. Nakkiran et al. (2020) emphasizes the distinctions between various
learning algorithms in the generalization of dense networks. They found
that contrastive representation learning can achieve outstanding accuracy
and enhance out-of-distribution generalization. This section focuses on the
influence of supervision in the neural network pruning process. We aim to
address the question:
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How do sparsified neural networks differ when trained with supervised versus
semi-supervised loss?

This section studies the impact of different versions of magnitude pruning
on the representation learned by deep models trained with supervised cross-
entropy loss (Sup) and supervised contrastive learning (SCL) (Khosla et al.,
2020) methods. We investigate the impact of changing the pruning sched-
ule, comparing the impact of post-training global one-shot pruning (One-
Shot) (Paganini & Forde, 2020), Gradual Magnitude Pruning (GMP) (Zhu &
Gupta, 2017) and a delayed version of GMP (∆GMP) on the learned represen-
tation. Along with the obtained test set accuracy and the analysis of Pruning
Identified Exemplars (PIEs) (Hooker et al., 2019), we also evaluate the Q-
Score (Kalibhat et al., 2022), prediction depth PD-Score (Baldock et al., 2021)
metrics and visually inspect obtained representations with UMAP (McInnes,
Healy, Saul, et al., 2018) to draw our conclusions.

In this section, we explore the influence of various magnitude prun-
ing variants on the representations learned by deep models using super-
vised cross-entropy loss (Sup) and supervised contrastive learning (SCL)
(Khosla et al., 2020) approaches. We assess the effects of modifying the
pruning schedule and compare the impacts of post-training global one-shot
pruning (One-Shot) (Paganini & Forde, 2020), Gradual Magnitude Pruning
(GMP) (Zhu & Gupta, 2017) and a delayed version of GMP (∆GMP) on the
learned representations. Along with test set accuracy and the examination
of Pruning Identified Exemplars(PIEs) (Hooker et al., 2019), we also evalu-
ate the Q-Score (Kalibhat et al., 2022), prediction depth PD-Score (Baldock
et al., 2021) metrics, and visually inspect the resulting representations using
UMAP (McInnes, Healy, Saul, et al., 2018) to derive our findings.

• We demonstrate that models trained using SCL are considerably more
affected by all examined sparsification techniques compared to those
trained with supervised learning at the same sparsity levels. The
negative influence is most pronounced early in the training process

• We discovered that as sparsity increases, the quality of representations
learned by SCL deteriorates more than in supervised learning. This
highlights the need for pruning approaches that are better suited to
SCL models.

2.2.1 Methodology

Pruning methods and schedules. We implement different versions of
magnitude pruning to compare the relative merits and impact of different
techniques. Global post-training one-shot pruning (One-Shot) (Paganini &
Forde, 2020) is the simplest method operating on a fully learned representa-
tion. We use finetuning to recover accuracy loss due to One-Shot pruning.
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finetuning is performed using a Supervised loss function. Gradual Magni-
tude Pruning (GMP) (Zhu & Gupta, 2017) is also used in (Hooker et al.,
2019) to investigate how pruning impacts different classes. At each pruning
iteration for GMP, a certain percentage of the least important weights (based
on their absolute magnitude) are removed from the network. The remaining
weights are then finetuned to recover any loss in accuracy. This process is
repeated for several iterations until the desired sparsity level is reached. A
delayed version of GMP (∆GMP) starting from epoch 50 is evaluated for
contrastive models. The ∆GMP pruning is used to compare earlier pruning
against later pruning in terms of the impact on the quality of the compressed
representation.
PIEs. We evaluate all methods based on their generalization performance,
i.e., test-set accuracy. To quantify the impact of sparsity on the model per-
formance, we assess the level of disagreement between the predictions of pruned
and non-pruned networks on a given example. As defined in (Hooker et al.,
2019), for each sample image i and a set of trained models M, we denote
the class predicted most frequently by the t-pruned models by yM

i,t and the
class predicted most frequently by non-pruned models (t = 0) by yM

i,0. The
sample i is classified as a Pruning Identified Exemplar (PIE) iff the label is
different between the set of t-pruned models and the set of dense models.

PIEi,t =

{
1 if yM

i,0 ̸= yM
i,t

0 otherwise.
(2.1)

Pruning introduces selective forgetting, i.e., the impact of sparsity is not
equally distributed amongst classes (Hooker et al., 2019). Instead, some
classes are more impacted than others. This unbalanced forgetting phe-
nomenon is stronger with lower sparsity and tends to be amplified as
sparsity increases. The PIEs framework helps to quantify the impact of
sparsity on the classes affected by pruning by detecting the examples for
which the average prediction changes due to model pruning compared to
the non-pruned version of the same model.
Training methods. We use a WideResNet (Zagoruyko & Komodakis, 2016)
architecture trained on CIFAR-10 (Krizhevsky et al., 2009) throughout our
experiments for SCL and Sup training. The encoder part of the network
contains 690k parameters and it is followed by a classification head real-
izing part of the supervised task. For SCL training our setup follows the
structure proposed in T. Chen et al. (2020). The encoder is first trained
with a contrastive loss on an augmented version of the dataset by using a
projection head discarded at the end of training, then the classification head
is finetuned with supervised training.
Q-Score. Q-Score (Kalibhat et al., 2022) is an unsupervised metric to quantify
the quality of the latent representation of a sample produced by an encoder
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network. It can be used as a regularizer during training to let the network
produce a better latent representation. Learned representations of correctly
classified samples (1) have few discriminative features, i.e., higher feature
sparsity, and (2) the feature values deviate significantly from the values of
other features (Kalibhat et al., 2022). These two properties are encoded in
Q-Score defined as follows:

Qi =
Z-Score(hi)

∥hi∥1
, (2.2)

where hi is a latent representation of a sample i, ∥hi∥1 is its L1 norm and
Z-Score is computed as max(hi−µi)

σi
. A sample with a high Q-Score has high

probability to be classified correctly (Kalibhat et al., 2022).
Prediction depth (PD-Score). PD-Score (Baldock et al., 2021) is a supervised
metric that measures sample difficulty based on the depth of a network re-
quired to correctly represent the sample. It uses an encoder network where,
for each representation, a k-Nearest Neighbors (kNN) (Cover & Hart, 1967;
Fix & Hodges Jr, 1952) classifier is trained using hidden representations of
each sample in the training set. The prediction depth score of a sample is
determined by the depth from which its hidden representation is correctly
classified for all the subsequent kNNs. Baldock et al. (2021) show that diffi-
cult samples, i.e., samples that are easily misclassified, have high prediction
depth.
UMAP. We also illustrate the UMAP of the representation vectors after
applying different pruning methods. UMAP (McInnes, Healy, & Melville,
2018) is a dimensionality reduction algorithm created over a mathematical
framework which preserves pairwise and global distance structures of
the data projected onto a lower dimensional space. Compared to other
dimensionality reduction algorithms, UMAP has no restrictions on the size
of the embedding vectors.

For each sparsity and learning method, we trained 30× WideResNet16-2
models with SGD on CIFAR-10. We prune the networks to achieve sparsity
levels t ∈ {0, 30, 50, 70, 90}%. GMP (Zhu & Gupta, 2017) and ∆GMP prune
models during training, whereas One-Shot applies pruning post-training
followed by a finetuning step. Below we compare the results obtained for
Sup and SCL models with respect to the distribution of PIEs and com-
pare the representation obtained by pruned models to the one learned by
uncompressed models.

2.2.2 Impact of sparsity on distribution of PIEs

Table 2.1 presents the test-set accuracy of the models along with the total
count of PIEs. Comparing GMP and One-Shot pruning for Sup models
reveals that the latter results in a smaller number of PIEs across all pruning
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Spar- Sup / GMP
Sup / One-Shot SCL / GMP SCL / ∆GMP SCL / One-Shot

sity (Ours)
% PIE⋆ Acc[%] PIE Acc[%] PIE Acc[%] PIE Acc[%] PIE Acc[%]

0 - 90.58±0.38 - 90.58±0.38 - 92.06 ±0.17 - 92.06 ±0.17 - 92.06±0.17
30 188 90.5±0.39 90 90.3±0.39 180 91.58±0.2 176 91.59±0.18 233 93.28±0.17
50 179 90.4±0.34 95 90.37±0.37 241 90.92±0.18 184 91.23±0.16 236 93.06±0.2
70 204 90.14±0.34 97 90.33±0.37 350 89.58±0.2 271 90.48±0.25 235 92.38±0.17
90 273 89.47±0.36 183 89.64±0.34 748 85.56±0.4 522⋄ 87.76±0.33⋄ 549 87.83±0.25

Table 2.1: Comparison of the number of PIEs for different training and pruning methods
(Corti et al., 2022). SCL models show a more pronounced drop in performance
(higher number of PIEs, lower accuracy) with higher sparsity compared to Sup
models. Pruning later in training (One-Shot pruning and ∆GMP) is more friendly
to representation learning than early sparsification in training (GMP). ⋆Our
results differ from those reported in (Hooker et al., 2019) due to a different model
architecture. ⋄Results are aggregated over 25 models instead of 30.

ratios. Among SCL models, the lowest quantity of PIEs is obtained by ∆GMP
at all sparsity levels (excluding 70% sparsity). Additionally, we note that
SCL models tend to forget more readily than Sup models at sparsity levels
above 30%.

2.2.3 Impact of sparsity on representation quality

Figure 2.4 displays the UMAP projections of samples derived from both
pruned and non-pruned SCL and Sup models. This visualization indicates
that supervised contrastive learning is more vulnerable to reduced represen-
tation quality at elevated sparsity levels compared to supervised learning.
Our results for the impact of sparsity evaluated by Q-Score also show that
Q-Score decreases with higher sparsity and this trend is considerably more
pronounced in SCL than in Sup models for both GMP and One-Shot pruning
algorithms. See plots for the impact of sparsity evaluated by Q-Score, in
Corti et al. (2022).

2.2.4 Impact of sparsity on sample difficulty

Figure 2.5 shows PD-Score of the impact of pruning on the quality of learned
representations. The PD-Score for each sample is calculated as the average
of 5 pruned or 5 non-pruned models. Figure 2.5 compares the PD-Score
of samples processed using Sup and SCL models at 90% sparsity to the
PD-Score obtained for non-pruned models. PD-Score is higher for PIEs
and lower for the correctly classified samples. In the case of Sup models, a
sample’s PD-Score in a non-pruned model effectively predicts its PD-Score
in a pruned model. Conversely, for SCL, a sample’s PD-Score may undergo
significant changes due to pruning, resulting in high variance observed in
the two SCL plots on the left for GMP and pruning techniques. Similar
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a) Representation by supervised training without pruning (left), pruned 95% pruned by One-Shot (right).

b) Representation by supervised contrastive training without pruning (left), 95% pruned by One-Shot (right).

Figure 2.4: Impact of pruning on the learned representation (Corti et al., 2022). UMAP
diagrams of the models trained with supervised (top row) and supervised
contrastive (bottom row) learning using WideResNet on CIFAR-10. Supervised
contrastive learning is more susceptible to representation quality reduction at
high sparsity than supervised learning. For comparison between supervised
and contrastive when using GMP as pruning, refer to (Corti et al., 2022).

results are observed when using one-shot pruning. See Corti et al. (2022) for
more plots.

2.2.5 Discussion

In this section, we investigate the effects of sparsity on supervised contrastive
learning and compare the resulting representation quality with supervised
learning, using various metrics proposed in the literature. Our research
indicates that models utilizing a contrastive objective are more susceptible
to the introduction of sparsity than those employing traditional supervised
training with cross-entropy loss. Sparsity, in these optimization contexts,

30



2 Pruning and Generalization

Figure 2.5: PD-Score analysis of the impact of pruning on the quality of learned represen-
tations (Corti et al., 2022). In all plots PD-Score of a non-pruned network (x-axis)
is compared to the PD-Score of a pruned network with 90% sparsity (y-axis).
Left: Sup / GMP. Right: SCL / GMP. For Sup models, PD-Score of a sample
in an uncompressed model is a good predictor of PD-Score of a pruned model
(points lie close to the identity line). For SCL PD-Score of a sample may change
drastically due to pruning, thus high variance in SCL plots. For comparison
between supervised and contrastive one-shot pruning see (Corti et al., 2022).

considerably exacerbates class-wise error disparities at high sparsity levels.
Notably, sparsifying models trained with contrastive objective results in
three times the number of misclassified examples compared to supervised
learning models sparsified through global post-training magnitude pruning.
We hypothesized that this disparity arises from the semi-supervised objec-
tive’s sensitivity to training regime, where imposing sparsity early on can
be detrimental. Our modified approach, which delays pruning, enhances
outcomes in a semi-supervised setting. Further explorations, such as com-
pensating for the observed loss in accuracy by augmenting the capacity
or size of the intermediate representation, are considerations we plan to
investigate in future work. We hope this work sparks interest in developing
more representation-friendly pruning methods for supervised contrastive
learning.

2.3 Class-dependent pruning of deep neural
networks

As discussed in Chapter 1, there is an unprecedented need for efficient deep
learning models capable of addressing specific challenges in real-world
applications, including classification or anomaly detection in the medical
domain. However, these applications have to deal with both data imbalance
and class imbalance when training a deep model. On the one hand, real-
world data often follows a long-tailed data distribution in which a few
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Figure 2.6: Iterative network pruning with FN optimization (Entezari & Saukh, 2019).

classes account for most of the data, while many classes have considerably
fewer samples (Hasenfratz et al., 2014). Models trained on these datasets are
biased toward dominant classes (Cui et al., 2019). Related literature treats
data imbalance as a problem that leads to low model quality (Chawla et al.,
2002). The proposed solutions typically adopt class re-balancing strategies
such as re-sampling (Buda et al., 2018) and re-weighting (Y.-X. Wang et al.,
2017) based on the number of observations in each class. On the other hand,
there are many edge applications, which have unbalanced class importance:
e.g., missing an event may have far more severe consequences than triggering
a false alarm. This is especially the case in many detection scenarios and
early warning systems in the IoT domain. In this section, we focus on
keeping the number of FN low when pruning a deep network.

We provide an end-to-end network compression method based on the
iterative lottery ticket (LT) algorithm (Frankle & Carbin, 2019b) for finding
efficient smaller subnetworks in the original network. Since data imbalance
is a common problem model designers have to deal with, in the first step,
we extend the original LT algorithm with a parameterized loss function to
fight data imbalance. Related literature suggests that a direct compensation
for data imbalance into the loss function outperforms alternative methods
(Cui et al., 2019). In the second step, we control the number of false negatives
and false positives of the model by including a parameterized AUC-ROC
measure into the model compression task. AUC-ROC is a comprehensive
performance metric for binary classification models. It illustrates the model’s
capability to differentiate between positive and negative classes across all
possible classification thresholds. Essentially, AUC can be interpreted as the
probability that a randomly selected positive instance will be ranked higher
by the model than a randomly selected negative instance, focusing on the
model’s discrimination capacity, not their absolute values (Fawcett, 2006).

The proposed method is comprised of the network compression pipeline
outlined in Figure 2.6. Initially, the training data is utilized to train a class-
balanced model, while subsequent epochs prioritize minimizing FN over
FP. Our optimization function employs a combination of two loss functions
to 1) address data imbalance, and 2) manage class imbalance. Specifically,
we adopt a parameterized cross-entropy loss (Cui et al., 2019) to tackle the
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Algorithm 1 Class-dependent network compression

1: Randomly initialize the network f (x; m
⊙

W0) with the initially trivial
pruning mask m = 1|W0|;

2: Train the network for n iterations with the class-dependent loss L pro-
ducing the network f (x; m

⊙
Wk);

3: Prune p% of the remaining weights with the magnitude increase strategy,
i.e., m[i] := 0 if Wk[i] gets pruned;

4: Replace remaining weights Wk with their initial values W0;
5: Go to step 2 if the next (k + 1)-th round is required.

former, and incorporate the hinge ranking loss (Steck, 2007) to maximize
AUC-ROC and regulate the trade-off between FN and FP to tackle the latter.
The iterative pruning process is based on the LT algorithm.

2.3.1 Methodology

Lottery Ticket (LT) algorithm. Our class-dependent network compression
method leverages the iterative pruning used to search for efficient sparse
sub-networks called lottery tickets (LT) (Frankle & Carbin, 2019b) within
an original deep network. LT postulates that within a large, randomly-
initialized neural network, there exists a smaller subnetwork (referred to
as the "winning ticket") that, when trained in isolation, can achieve simi-
lar or better performance compared to the original network, using fewer
parameters and resources. LT starts with a randomly initialized neural net-
work and trains the network using a standard training procedure, such as
stochastic gradient descent (SGD), until it reaches a certain level of accuracy
or converges. Once the network is trained, LT prunes the network by re-
moving a fraction of the least important weights based on their magnitudes.
After pruning, LT reset the remaining weights of the pruned network to
their initial values (or earlier iterations in the training (Frankle et al., 2020))
and train the pruned network again using the same training procedure as
before. This procedure is repeated iteratively, pruning and retraining the
network multiple times to find an even smaller subnetwork with comparable
performance.

Algorithm 2. provides a pseudo-code of the LT algorithm with the magni-
tude increase mask criterion and a class-dependent loss function L explained
below. The algorithm initializes the network with random weights W0 and
applies an initially trivial pruning mask m = 1|W0|. The operation

⊙
denotes

an element-wise multiplication. After training the network for n iterations
we prune p percent of the weights using the magnitude increase strategy by
updating the mask m accordingly. The remaining weights Wk are then reset
to their initial values W0 before the next algorithm round starts.
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In every round of the algorithm we minimize the loss function L of the
following form

L = LwCE + LSHR, (2.3)

where LwCE and LSHR are the weighted binary cross-entropy loss and the
squared hinge ranking loss respectively detailed below.
Weighted binary cross-entropy loss. Inspired by Cui et al. (2019), we extend
the notion of the classical binary cross-entropy to compensate for the data
imbalance by introducing per-class weighting coefficients as follows

LwCE = −
M

∑
c=1

γc · yo,c log(po,c), (2.4)

where γc are weighting coefficients for every class; M is the number of
classes; yo,c ∈ {0, 1} is a binary indicator if the class label c is a correct
classification of the observation o; po,c is a predicted probability that the
observation o is of class c, and nc is the number of samples in c.

We leverage the results in Huang et al. (2016) and Y.-X. Wang et al. (2017)
and handle the weighting coefficients γc for individual classes as γc =

1−β
1−βnc ,

where β ∈ [0; 1) is a hyperparameter. In contrast to their work, we choose
the value of the hyperparameter β to compensate the data imbalance in
favor of a particular class. The setting β = 0 corresponds to no weighting
and β→ 1 corresponds to weighting by inverse data frequency for a given
class. Recent work by (Cui et al., 2019) shows that the weighting coefficients
γc play an important role in data-balancing. In particular, when training a
CNN on imbalanced data, data-balancing for each class, by means of γc,
provides a significant boost to the performance of the commonly used loss
functions, including cross-entropy.
Squared hinge ranking loss. The previous literature shows that 1) optimiz-
ing classification accuracy by minimizing cross-entropy cannot guarantee
maximization of AUC-ROC (Cortes & Mohri, 2004), and 2) AUC-ROC maxi-
mization as an optimization task yields a discontinuous non-convex objective
function and thus cannot be approached by the gradient based methods
(Yan et al., 2003). Proposed solutions for AUC-ROC maximization (Gultekin
et al., 2018) are based on approximations. In this paper, we use the squared
hinge ranking loss suggested in (Steck, 2007), while adding the parameters
λc to control the class imbalance.

LSHR = −
M

∑
c=1

λc max(1− yo,cro,c, 0)2. (2.5)

The squared hinge ranking loss is obtained from the hinge loss by replac-
ing po,c by a sorted in ascending order classifier output ro,c.
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Figure 2.7: Images from the ISIC (Gutman et al., 2016) and CRACK datasets (Özgenel, 2017).
Distinguishing between positive and negative samples in practical situations
can be challenging and requires specialized expertise.

The authors of (Steck, 2007) show that AUC-ROC can be written in terms
of the hinge rank loss as follows

AUC-ROC ≥ 1− LSHR − C
n+n−

, (2.6)

where n+, n− are the number of positive and negatives samples and C is
a constant independent of the rank order. Minimizing hinge ranking loss
leads to AUC-ROC maximization (Steck, 2007). We use the squared hinge
ranking loss LSHR to ensure our loss function L is differentiable.

This section introduces the benchmark datasets, lists the metrics we use
to evaluate the performance of our method, justifies parameter choices, and
presents the results.

Datasets

ISIC-2016. lesion classification dataset (Gutman et al., 2016) comprises
original medical images coupled with confirmed malignancy diagnosis
labels obtained from expert consensus and pathology report information.
Specifically, each image is assigned a label indicating whether it is benign or
melanoma. The training dataset consists of 900 dermoscopic lesion images,
with 173 positive and 727 negative examples, while the test set includes 379

images, with 76 positive and 303 negative samples, respectively. Examples
of positive and negative samples from the ISIC dataset are displayed in
Figure 2.7.
CRACK. dataset (Özgenel, 2017) comprises 40,K images, each of size
224×224 pixels, that are extracted from 500 full resolution images of 4032×3024

pixels taken from walls and floors of various concrete buildings. The camera
is positioned approximately 1 m away from the surfaces, with the camera
lens directly facing the target. The concrete surfaces vary in terms of surface
finishes, including exposed, plastering, and paint. The label is positive if an
image contains a crack and negative otherwise, and the labels are assigned
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by material science experts. Positive and negative samples from this dataset
are presented in Figure 2.7.

2.3.2 Experimental setup

In the case of the CRACK dataset, we enforce data imbalance by utilizing
20,K negative class images (no crack) and 4,K positive class images, with
70%, 15%, and 15% of samples allocated for training, validation, and testing,
respectively.
Networks. For classification tasks involving the ISIC-2016 and CRACK
datasets, we adopt AlexNet (Krizhevsky et al., 2012), which is pre-trained on
ImageNet (Deng et al., 2009), and adjust the number of fully-connected layers
to incorporate 256, 8, and 2 neurons. This network has a total of 2’471’842

parameters. Since our compression method employs iterative pruning based
on the LT algorithm, we use these relatively shallow networks to manage
the computational load on the available resources at edge devices.
Hyperparameters. To evaluate the performance of the proposed method,
we follow our two-step design. First we focus on balancing the imbalanced
data using the γ parameter, then we use λ multipliers for ranking loss to
optimize AUC-ROC. Leveraging the results reported in (Cui et al., 2019;
Huang et al., 2016) to achieve data balancing by setting the loss function
parameters according to the inverse class frequencies, we set β close to 1 in
our tests. For both datasets, we set γc = 5 i.e., equal to the class frequency.
We test λc ∈ {0, 1, 2, 10}, where λc = 0 stands for the standard LT algorithm.
By following the magnitude increase pruning strategy we prune p = 50% of
the remaining weights in every round.

To assess the effectiveness of the proposed method, we adopt a two-step
approach. First, we prioritize balancing the imbalanced data by utilizing
the γ parameter and subsequently employ λ multipliers for ranking loss to
optimize AUC-ROC. Drawing on the results presented in (Cui et al., 2019;
Huang et al., 2016) for achieving data balancing by setting the loss function
parameters based on the inverse class frequencies, we set β to be close to 1

in our experiments. For both datasets, we set γc = 5, which is equivalent to
the class frequency. We evaluate λc ∈ {0, 1, 2, 10}, where λc = 0 corresponds
to the standard LT algorithm. To perform pruning, we adopt the magnitude
increase pruning strategy and prune p = 50% of the remaining weights at
every iteration.
Scenarios. We test our method in three different scenarios, each of which
reflects a specific setting detailed below.

blue In this scenario, we test the effect of our ranking loss (class balancing)
compared to the standard LT algorithm (red), without weighting cross
entropy loss (data balancing). Therefore, we have γc = 1 and λc = 5.
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Figure 2.8: Evaluation results on ISIC-2016 (Entezari & Saukh, 2019). Our method (black
line) outperforms the LT algorithm (red line) in accuracy, FNR, and FPR for up to
1% of remaining weights in the pruned network. Our method also outperforms
LOBS, SNIP, and MobileNet in AUC-ROC and FPR. Our results on CRACK
dataset also show the superior performance of our method compared to the
LT algorithm and other baselines. See Entezari and Saukh (2019) for CRACK
evaluation and AUC-ROC plots.

black In this scenario, we test the effect of weighting cross-entropy loss
(data balancing). Therefore, compared to the previous scenario (blue),
we have γc = 5 along with λc = 5. We find that starting the first round
with γ1 = 1 helps the network to initially find the boundaries between
the two classes without any specific focus

green In this scenario we test for weighting higher values for data balancing,
so we set γc = 10 everywhere, while λc = 5.

We compare our method to the original LT original with the magnitude
pruning criterion. The weights for both positive and negative classes are
set to γc = 1 and we use no ranking loss with λc = 0. We also extend
our comparison to three well-known baselines as LOBS (Dong, Chen, et al.,
2017), SNIP (Lee et al., 2018), SNIP with finetuning, and MobileNet (A. G.
Howard et al., 2018).

2.3.3 Evaluation of the proposed method

The evaluation results for the ISIC dataset are presented in Figure 2.8. We
compare our outcomes to the best performance achieved with the conven-
tional LT algorithm, utilizing the magnitude increase pruning criterion,
along with three other recent benchmarks. Our objective is to compress the
network while optimizing the classification accuracy and minimizing the
number of false negatives for a specific class.

As illustrated in Figure 2.8(a), the "black" scenario, where λc = 5, γ = 1
for the first training epoch, and γ = 5 for subsequent epochs, yields the
best accuracy for the ISIC dataset. Setting γ1 = 1 highlights the significance
of learning the class boundaries in the first iteration through balanced
training. From the second iteration, we concentrate on the positive class by
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employing γ2,n = 5 for the desired positive class. This configuration not
only outperforms the standard lottery ticket algorithm in terms of accuracy
but also surpasses recent popular benchmarks, including LOBS, SNIP, and
MobileNet.

Figure 2.8(b) indicates that incorporating ranking loss into the standard
LT algorithm as a substitute for class balance leads to an improvement in
the FNR (blue line). However, weighting the cross-entropy for data-balance
results in an even stronger improvement of the FNR (black line). The optimal
FNR is achieved by assigning a higher weight to the positive class by setting
γc = 10 in all pruning iterations (green line). Comparing Figure 2.8(c) with
Figure 2.8(b) reveals a trade-off between FPR and FNR. As demonstrated in
the former, we attain the lowest FPR when applying neither class-balance nor
data-balance. The FPR for LOBS and SNIP without training (after pruning)
is also extremely high (close to 1), signifying that they wrongly classify all
negative samples as positive. For more details on the results for the CRACK
dataset and additional plots for the ISIC dataset, please refer to Entezari
and Saukh (2019).

2.3.4 Discussion

A substantial number of edge applications must address both data imbalance
and class imbalance, primarily due to the inherently dynamic environment
of edge devices. On one hand, in many real-world scenarios, data follows
a long-tailed distribution, where a small number of classes represent the
majority of data points, and numerous other classes have significantly fewer
samples. On the other hand, many edge applications exhibit unbalanced
class importance, meaning that the consequences of missing an event can
be far more severe than triggering a false alarm. Our network compression
method combines network pruning with efficient network design to address
both of these challenges. Unlike other compression methods, which try to
minimize the overall error rate, our method additionally optimizes AUC-
ROC while focusing on a desired class which appears to be useful in a
number of real applications in the IoT domain.

2.4 Deep neural network pruning for nuclei
instance segmentation

In certain real-world scenarios like telemedicine, quick diagnoses, and
decision-making are crucial. Telemedicine involves delivering remote health-
care services via communication technologies, enabling patients and health-
care providers to interact and share information without being in the same
physical location. Two primary factors present challenges to telemedicine
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adoption: telemedicine can be particularly challenging in underdeveloped
countries with poor Internet infrastructure. Privacy reservation is the second
reason, as users often prefer to keep their data on their own devices. More-
over, the implementation of sparsity in telemedicine is highly advantageous,
particularly when considering the growing need for accessible and efficient
healthcare solutions. By leveraging neural network sparsity techniques, the
computational demands of medical models are significantly reduced. Such
compact models enable the deployment of advanced medical tools such as
portable ultrasound on smartphones (Somauroo, 2019), facilitating imme-
diate access to diagnostic information even in remote or resource-limited
settings. This accessibility is essential for delivering high-quality healthcare
services to a wider range of patients, irrespective of their geographical
location while preserving their privacy.

In this section, we exploit sparsity for nuclei instance segmentation in
Hematoxylin and Eosin (H&E)-stained histological images. This section
showcases a collaboration with experts in the medical domain (Medical
University of Vienna) to validate the advantages of sparsity in the medical
domain. Nuclei instance segmentation refers to the process of identifying
individual cell nuclei in microscopic images of tissue samples that have
been stained using the H&E staining technique (Sirin et al., 2016). H&E
staining is a widely used technique in histology and pathology to highlight
different structures in tissue samples. Hematoxylin stains the cell nuclei
blue, while Eosin stains the cytoplasm and extracellular matrix in varying
shades of pink (see Figure 2.9). This contrast helps to distinguish different
cellular structures and cell types. Nuclei instance segmentation plays an
essential role in the analysis of histological whole slide images and can be
considered as a fundamental step for further analysis (Skinner & Johnson,
2017). Parameters such as nuclei density or count can be extracted from
instance segmentation masks. In the next step, this information is used for
disease detection, diagnosis, and treatment planning (Jørgensen et al., 2017).
Our findings indicate that by applying layer-wise pruning, the weights from
the semantic segmentation and deep regression, models can be pruned with
less than 2% drop in the evaluation indexes. Interestingly, our results also
demonstrate that nuclei semantic segmentation is highly robust against
pruning, with a barely reduced Dice score even at extreme compression
ratios. Furthermore, we observe that both pruning methods exhibit high
robustness against distribution shifts, highlighting their critical importance
in real-world applications.

2.4.1 Methodology

In this section, we employ a recently developed model for nuclei instance
segmentation (Mahbod et al., 2019), comprising two main branches: a seman-
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Figure 2.9: Visualizing the layer-wise pruning impact on the final instance segmentation
performance (Mahbod et al., 2022). The first column shows the raw input
images, the second column shows the ground truth instance segmentation
masks, and the rest shows the predicted masks by the model with different
compression ratios (CRs).

tic segmentation branch and a deep regression branch. We investigate the
impact of DNN magnitude pruning on both branches, using two strategies,
i.e., networks-wide and layer-wise, and examine the resulting instance seg-
mentation outcomes. Through this, we explore the pruning effect on three
distinct image analysis tasks, namely semantic segmentation, regression,
and instance segmentation.

The workflow of the DNN pruning approach for nuclei instance segmen-
tation is illustrated in Figure 2.10, where the left branch performs semantic
segmentation, while the right branch conducts deep regression. To compress
the model, each branch undergoes iterative training and pruning. Finally, the
final sparse networks for both branches are merged to produce the ultimate
post-processed instance segmentation model.

Datasets

We evaluate the efficacy of our pruning strategies on two publicly avail-
able datasets, MoNuSeg (Kumar et al., 2020) and TNBC (Naylor et al.,
2019). MoNuSeg contains 44 HE-stained histological images of fixed size
1000×1000 pixels. The image patches were extracted from the TCGA database
and nine human organs (breast, kidney, liver, prostate, lung, bladder, colon,
stomach, and brain). All images were acquired at 40× magnification, and
the dataset includes over 28,000 manually segmented nuclei. The dataset is
divided into a training set of 30 images and a test set of 14 images.

The TNBC dataset comprises 50 HE-stained histological images of fixed
size 512×512 pixels, scanned at 40× magnification from one organ (breast).
Over 4,000 nuclei were manually segmented in this dataset. Further details
are available in (Naylor et al., 2019).
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Figure 2.10: The generic workflow of the proposed method (Mahbod et al., 2022). Iterative
pruning and training for semantic segmentation and regression models are
shown in blue boxes.

2.4.2 Segmentation and regression models

Our instance segmentation model for nuclei segmentation is inspired by Mah-
bod et al. (2019). As shown in Figure 2.10, the proposed pruning pipeline
processes two models separately, namely a semantic segmentation model
and a deep regression model. The main task of the semantic segmentation
model is to separate the background from the foreground, while the deep
regression model predicts the nuclei distance maps. The architectures of the
utilized models are the same, both being encoder-decoder-based models
with skip connections between the encoder and decoder parts. Both models
have the same number of trainable parameters, totaling around 24.4 million.
As the semantic segmentation model deals with a binary segmentation task,
we use the sigmoid activation function in the last layer with the Dice loss
function. For the deep regression model, however, we use a linear activation
function in the last layer with a mean square error loss function to handle
the regression task. Aside from these two differences, the model architec-
tures, training, and inference procedures are identical in both branches.
We use Adam optimizer with a batch size of 2 for model training, and
the initial learning rate was set to 0.001 with a cosine annealing learning
rate scheduler (Loshchilov & Hutter, 2016). We train each model for 1000

epochs. As the DNN models were trained with limited training samples,
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we made use of a number of augmentation techniques suggested in prior
studies (Mahbod et al., 2021; Mahbod et al., 2019). We apply resizing (only
for the MoNuSeg dataset to match them to 1024×1024 pixels), random hori-
zontal flipping, random scaling and shifting, random Gaussian filtering, and
random perspective transformation as the main augmentation techniques.

2.4.3 Network-wide and layer-wise pruning

In previous sections, we discussed different model sparsification strategies.
Among all these methods, magnitude pruning has gained a lot of attention
mainly for two reasons: it features superior performance than many other
pruning strategies, and it is computationally inexpensive, e.g., there is no
need to compute Hessians. In this section, we employ two versions of
magnitude pruning, namely network-wide (also known as global) and layer-
wise magnitude pruning. Related works (Paul et al., 2022; Renda et al.,
2020) show that iterative pruning achieves better performance than one-
shot pruning. Therefore we also use iterative magnitude pruning for both
network-wise (when we rank all weights and remove %X of all weights in
each step) and layer-wise (remove %X from each layer).

In previous sections, we discussed different model sparsification strategies.
Among all these methods, magnitude pruning is a popular method for
DNN sparsification due to its simplicity and effectiveness. It involves setting
a threshold value and removing weights below this threshold value. In
network-wide magnitude pruning, a single threshold value is set for the
entire network, and weights are pruned based on this threshold. On the
other hand, in layer-wise magnitude pruning, a threshold value is set for
each layer, and weights in each layer are pruned based on their respective
threshold values.

Iterative pruning involves pruning the network multiple times, each time
retraining the pruned network to recover accuracy. This allows for a more
gradual sparsification process that can preserve the network’s accuracy
better than one-shot pruning. In iterative magnitude pruning, a percentage
of weights are pruned in each iteration until the desired sparsity level is
achieved. Several recent works have compared the performance of different
pruning methods and found that iterative magnitude pruning outperforms
one-shot pruning (Paul et al., 2022; Renda et al., 2020).

The final instance segmentation masks were generated by merging the
results from the semantic segmentation and deep regression branches, as
presented in Figure 2.10. In order to prevent the detection of false-positive
local maxima, we applied a Gaussian smoothing filter on the predicted
nuclei distance maps that were generated by the deep regression model.
The size of the kernel for the Gaussian filter was based on the estimated
average nuclei size that was obtained from the segmentation model (Mahbod
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et al., 2019). We then extracted local maxima from the smoothed distance
maps and utilized them as seed points for the marker-controlled Watershed
algorithm (Yang et al., 2006). The background for the instance segmentation
masks was determined by the predicted binary segmentation masks from
the semantic segmentation model. We also applied two post-processing
steps that were suggested in previous studies (Kumar et al., 2020): we
removed small objects from the segmentation masks (area <30 pixels) using
morphological operations, and filled the holes in the predicted instances.

2.4.4 Evaluation of the sparse instance segmentation
model

To assess the final instance segmentation performance, we utilized the
Aggregate Jaccard Index (AJI) (Kumar et al., 2020) and Panoptic Quality
(PQ) score (Graham et al., 2019) as the primary evaluation scores. The
AJI is computed as the ratio of the sum of intersection areas between all
matched predicted and ground-truth instances to the sum of union areas
of all instances, both predicted and ground truth. On the other hand, PQ is
a single score that combines segmentation quality and recognition quality.
PQ is determined by multiplying the average IoU of matched predicted and
ground-truth instances (segmentation quality) by the F1-score of matching
pairs (recognition quality). PQ ranges from 0 to 1, where a higher score
indicates better performance. Additionally, we employed Dice similarity
score and Mean Square Error (MSE) as evaluation indices to assess the
performance of each DNN model (i.e., semantic segmentation model and
deep regression model). The dice score evaluates the similarity between the
two sets and is calculated by taking twice the number of elements common
to both sets and dividing by the sum of the sizes of the sets. A detailed
explanation of these scores is available in (Graham et al., 2019).

In our experiments, we use the training set of the MoNuSeg dataset to
train and iteratively prune the model. The performance results of the pruned
models on the test set of the MoNuSeg dataset and the entire TNBC dataset
are presented in Figure 2.11 and Figure 2.12, respectively.

Table 2.2: Theoretical Speedup. Layer-wise pruning yields higher speed-ups, as it prunes
more weights in the early layers that have small kernels applied to a large input,
requiring more FLOPS. CR > 27 is impossible to achieve with layer-wise pruning
due to loss of connectivity inside the model.

Pruning Method Compression Ratio (CR)

2 4 8 16 32 64 128 256 512

Network-wide 1.49 2.13 3.07 4.46 6.59 9.90 15.01 23.80 45.02

Layer-wise 1.99 3.99 7.97 15.89 31.57 62.27 121.18 - -
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Figure 2.11: Impact of two pruning methods on the semantic segmentation(Dice), re-
gression (MSE), and instance segmentation (AJI, PQ) (Mahbod et al., 2022).
Performance evaluation on the MoNuSeg test set. Nuclei semantic segmenta-
tion is extremely robust against both pruning methods. Layer-wise pruning
shows better performance for smaller compression ratios while enforcing larger
pruning ratios to each layer harms the total performance.

Figure 2.11 shows that nuclei semantic segmentation network is ex-
tremely robust against pruning, where removing 0.992% of the parameters
in network-wide (CR = 27) and 0.937% (CR = 24) in layer-wise fashion is
possible with only 2% reduction in Dice. It also shows that layer-wise prun-
ing is a better choice (for all measures and tasks) for smaller compression
ratios, while enforcing extreme pruning ratios (CR > 25) to each layer harms
the total performance. That is due to losing small yet important kernels in
the early layers. Extreme pruning ratios (CR > 28) are also not possible to
achieve with layer-wise pruning because this leads to removing the whole
layer.

Another interesting observation in Figure 2.11 (network-wide) is that
pruning deep regression model first increase MSE and then decrease MSE
(and ultimately results in high MSE values due to extreme compression
ratios). This observation is aligned to previous works (Renda et al., 2020),
where the authors observe the performance improvement when pruning.
Such a performance improvement results in extreme compression ratios
(CR = 27) for network-wide instance segmentation pruning while only
losing 2 % in AJI and PQ.

Distribution shift In the medical domain, it is quite common for data
distributions to change over time due to factors such as evolving disease
patterns, advancements in diagnostic techniques, and changing patient pop-
ulations. As a result, it is crucial to continuously evaluate the performance
of trained models to ensure their effectiveness and accuracy are maintained,
even as the underlying data shifts. Figure 2.12 evaluates model performance
under distribution shift, i.e. training and pruning on MoNuSeg and test on
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Figure 2.12: Impact of pruning on model performance under distribution shift (Mahbod
et al., 2022), i.e. training and pruning on MoNuSeg and test on TNBC dataset.
All evaluation metrics are identical to Figure 2.11. Layer-wise pruning shows
less robustness to the distribution shift.

the TNBC dataset. All evaluation metrics are close to Figure 2.11, showing
that our pruning schemes are robust to potential natural distribution shifts
presented by a different dataset. Comparing network-wide and layer-wise
pruning shows that the latter presents less robustness to the distribution
shift. Similar evaluation patterns also can be seen in the TNBC dataset, i.e.
for smaller CRs, layer-wise is a better choice for instance segmentation. We
also observe the performance decrease and then increase for network-wide
pruning, as better solutions are found using iterative pruning and training.

Table. 2.2 shows the theoretical speedup that can potentially be achieved
by proper hardware supporting model sparsity for both pruning techniques
along different CRs. As expected, layer-wise pruning gains much higher
speed-ups, as it stronger prunes early layers.

Figure 2.9 provides qualitative evaluation of the impact of pruning on the
final instance segmentation for different CRs. DNN pruning with small CRs
(CR ≈ 23 and smaller) has not drastically changed the predicted instance
segmentation masks. However, the instance segmentation performance has
been significantly degraded for very large CR (CR = 28).

2.4.5 Discussion

This section presents the application of two magnitude-based pruning tech-
niques, namely network-wide and layer-wise pruning, for nuclei instance
segmentation in H&E-stained histological images. Our findings indicate that
by applying layer-wise pruning at a certain compression rate, the weights
from the semantic segmentation and deep regression models can be pruned
with less than 2% drop in the evaluation indexes. Interestingly, our results
also demonstrate that nuclei semantic segmentation is highly robust against
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pruning, with a barely reduced Dice score even at extreme compression
ratios. Furthermore, we observe that both pruning methods exhibit high
robustness against distribution shifts, highlighting their critical importance
in real-world applications. Future research is required to explore alternative
pruning techniques and investigate their impact on the nuclei instance seg-
mentation performance for in-distribution and out-of-distribution regimes.
Future directions include extending this work to investigate instances af-
fected by different pruning strategies and focusing on avoiding accuracy
reduction across all classes.

2.5 Conclusion

In this chapter, we investigated the interplay between sparsity and robust-
ness in neural networks, particularly for edge devices operating in dynamic
environments. We began by providing an overview of sparsity techniques
and their potential impact on model robustness. Our findings demonstrated
that contrary to common belief, sparsity indeed does not hurt network
robustness when network capacity is properly managed. Moreover, we
examined the impact of various learning techniques, such as supervised
and contrastive learning, on the generalization capabilities of sparse neural
networks. We observed that models trained with a contrastive objective
are more sensitive to the introduction of sparsity relative to traditional
supervised training with a cross-entropy loss.

Next, to tackle the challenges of data and class imbalance frequently en-
countered in real-world edge applications, we proposed an end-to-end spar-
sity method that incorporates a parameterized loss function. This method
successfully addressed both data and class imbalance while optimizing the
AUC-ROC and maintaining a focus on the desired class. The effectiveness
of our approach was showcased in real-world edge applications.

Lastly, we highlighted the importance of domain expertise in medical
imaging applications and demonstrated the potential of sparse neural net-
works in this area. By applying magnitude-based pruning techniques to
nuclei instance segmentation in HE-stained histological images, we observed
high robustness against pruning and distribution shifts, which is critical in
real-world edge applications.

In conclusion, our sparsity-driven approach demonstrates significant
promise for edge devices operating in diverse environments with varying
conditions. By exploring the interplay between sparsity and robustness, and
addressing the challenges of data and class imbalance, we have contributed
to the development of more efficient, robust, and generalizable machine
learning models for edge computing applications. One future direction on
sparsity can be the development of adaptive pruning techniques for on-
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device training and learning. This would enable efficient model optimization
by dynamically adjusting the pruning process according to the device’s
resources and the specific application requirements.
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3 Loss Landscape and
Generalization

As discussed in Chapter 1, understanding the loss landscape of neural
networks plays a crucial role in improving generalization. The shape of
the loss landscape can be affected by several factors, including the model
architecture, the amount and quality of training data, and the choice of an
optimization algorithm, and can have a significant impact on the generaliza-
tion performance of neural networks. In this chapter, we first introduce some
background about the loss landscape of neural networks (Section 3.1). We
then review the connectivity of neural networks and the geometric structure
of the loss landscape (Section 3.2). We examine the loss landscape of neural
networks and investigate how overparameterization influences its shape
(Section 3.3).

We also look into the invariances of neural networks and their role in the
shape of the loss landscape. We conjecture that the barriers between different
solutions in the loss landscape are due to the symmetries of the function class
(Section 3.5). Fundamentally, our conjecture suggests that accounting for
permutation invariance eliminates loss barriers between various solutions,
with all of them residing in the same loss landscape basin. Although this
is a bold conjecture, we present theoretical support and multiple empirical
findings to back our hypothesis. Furthermore, we assess different neuron
alignment algorithms to identify the optimal permutation (Section 3.8).

We then investigate the internal behavior of neural networks by focus-
ing on the statistics of hidden units and identified the "variance collapse"
phenomenon, causing a rapid drop-off in the performance of interpolated
networks (Section 3.9). We propose a method, called REPAIR to encounter
this problem. We show that REPAIR significantly improves the performance
of interpolated networks across a wide variety of architectures and datasets,
supporting our permutation invariance conjecture (Section 3.10).

3.1 Background

In classical machine learning, we observe a U-shaped bias-variance trade-
off, where increasing model complexity typically results in a decrease in
training error and an increase in test error after reaching an optimal point.
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However, for neural networks, the test error first decreases, then increases,
and finally decreases again as the model size or training time increases. This
phenomenon is referred to as deep double descent (Nakkiran et al., 2019).
The deep double descent phenomenon suggests that overparameterized
models can actually generalize better when trained for longer periods or
with larger datasets (Nakkiran et al., 2019). Overparameterization in neural
networks refers to the use of more parameters than necessary to solve a
given task. An overparameterized model refers to a neural network with
the capacity to memorize data, often having more parameters than the
number of data points in the training set. The number of parameters serves
as a simple proxy for measuring capacity (Neyshabur et al., 2014). Deep
double descent has important implications for the design and training of
deep learning models, as it challenges the conventional wisdom that simpler
models with fewer parameters are always better for generalization.
Overparameterization. It has been shown that overparameterization is ben-
eficial for improving the generalization performance of neural networks,
despite additional computational and memory requirements. One reason for
this is that overparameterization can enable the network to learn multiple so-
lutions to a given task, allowing it to generalize better to new data. C. Zhang
et al. (2021) show that overparameterization can improve the generalization
performance of deep neural networks, particularly for image classification
tasks. The authors show that when a network is overparameterized, it can
learn multiple linear regions that correspond to different classes, enabling it
to generalize better to new data. The authors also showed that overparame-
terization helps to avoid overfitting by effectively regularizing the network.
This result has since been confirmed by other studies such as (Novak et al.,
2018), which showed that overparameterization also helps to avoid sharp
minima in the loss landscape, which can lead to poor generalization perfor-
mance. In addition to generalization improvement, overparameterization
can also enable the use of more efficient optimization methods. For instance,
large-batch training, which involves training the network on a large batch
of samples, has been shown to be more efficient for overparameterized
networks (Goyal et al., 2017). This is because overparameterization can help
to smooth out the loss landscape, making it easier to find a good solution
using large batches.
Scaling laws. Kaplan et al. (2020) discover a set of scaling laws, specifically
for large language models, but the results are applicable to most transformer
models. They discover that language modeling performance progressively
enhances as model size, dataset size, and compute resources for training
are increased. They noted that empirical performance exhibits a power-law
relationship with each individual element, when not constrained by the other
two factors. This observation motivates the community for scaling neural
networks to extremely large sizes both in parameter count and data size, e.g.,
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Gopher (Rae et al., 2021), a DeepMind language model with 280B parameters
(larger than GPT-3 with 175B parameters). However, Chinchilla (Hoffmann
et al., 2022) (by DeepMind) could outperform Gopher despite being only 70B
parameters and costing the exact same amount of computing. The findings
of this study suggest that simply increasing the size of neural networks is
not always the most effective approach. Rather, it is crucial to identify the
appropriate balance between the number of parameters and the amount
of training data for optimal neural network training. As a result, there is a
growing emphasis on optimization rather than scale, in order to improve
the efficiency and effectiveness of neural network training. Consequently,
recent research has started to focus on model architecture and training
optimization techniques to enhance the efficiency and effectiveness of neural
network training without relying solely on scale (Tay et al., 2022; S. Wang
et al., 2020).

A better understanding of the loss landscape allows researchers to design
more efficient optimization algorithms and training strategies, ultimately
leading to better generalization and faster convergence (Dinh et al., 2017). As
the scale of neural networks and the complexity of tasks continue to increase,
a deeper comprehension of the loss landscape becomes increasingly essential
for developing models that are not only powerful but also efficient, making
them more accessible and robust across various applications. Understanding
the loss landscape could help researchers address overparameterization
by guiding them toward models with fewer parameters. This is crucial for
creating efficient models that are well-suited for resource-constrained edge
devices. Furthermore, a comprehensive grasp of the loss landscape allows
researchers to find solutions in the high dimensional space that demonstrate
enhanced robustness to real-world variations. This quality is essential for
edge devices, which often operate in dynamically changing environments.

Basin The definition of the basin is crucial for understanding the loss
landscape and creating weight space ensembles. In the literature, the term
"basin" is frequently used in a broad sense to denote regions in the parameter
space where the loss function has relatively low values. Keskar et al. (2016)
demonstrate that non-linear low-loss pathways can be identified to connect
any two solutions. Given a loss function ℓ : Rn → R+and a closed convex
set S ⊂ Rn, Neyshabur et al. (2020a) defined that S is a(ϵ, δ)-basin for ℓ if
and only if S has all following properties:

• Let US be the uniform distribution over set S and µS,ℓ be the expected
value of the loss ℓ on samples generated from US. Then,

Ew∼US [|ℓ(w)− µS,ℓ|] ≤ ϵ (3.1)
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• For any two points w1, w2 ∈ S, let f (w1, w2) = w1 + α̃ (w2 − w1),
where α̃ = max {α | w1+ α (w2 − w1) ∈ S}. Then,

Ew1,w2∼US,ν∼N (0,(δ2/n)In) [ℓ ( f (w1, w2) + ν)− µS,ℓ] ≥ 2ϵ (3.2)

• Let κ (w1, w2, ν) = f (w1, w2)+
ν

∥ f (w1,w2)−w1∥2
( f (w1, w2)−w1). Then,

Ew1,w2∼US,ν∼N (0,δ2) [ℓ (κ (w1, w2, |ν|))− µS,ℓ] ≥ 2ϵ (3.3)

The first point requires that for most points on the basin, their loss
should be close to the expected value of the loss in the basin. The other
two requirements ensure that points in the vicinity of the basin exhibit a
higher loss than the expected loss on the basin. Specifically, the second
criterion achieves this by introducing Gaussian noise to the points in the
basin, demanding that the loss be greater than the expected loss in the
basin. Similarly, the third point requires that the loss should increase when
moving away from the basin by extrapolating two points within it, along
the subspaces spanned by this extrapolation (Neyshabur et al., 2020a).

3.2 Mode connectivity of neural networks

Understanding the loss landscape of deep neural networks has been the
subject of many studies due to its close connections to optimization and
generalization (Baldassi et al., 2020; Fort et al., 2019; Geiger et al., 2019; H. Li
et al., 2017; Mei et al., 2018; Q. Nguyen et al., 2018). Empirical observations
suggest that the loss landscape of deep networks has many minima (Draxler
et al., 2018; Keskar et al., 2017; C. Zhang et al., 2017). One reason behind the
abundance of minima is overparameterization. Overparameterized networks
have enough capacity to present different functions that behave similarly
on the training data but vastly different on other inputs (D. Li et al., 2018;
C. Liu et al., 2020; Neyshabur et al., 2017; Q. Nguyen et al., 2018). Another
contributing factor is the existence of scale and permutation invariances that
allows the same function to be represented with many different parameter
values of the same network and imposes a counter-intuitive geometry on
the loss landscape (Brea et al., 2019a; Neyshabur et al., 2015).
Mode connectivity in neural networks refers to the phenomenon where
different modes (i.e., distinct minima) of the loss landscape are connected
by low-loss pathways, implying that these modes are not isolated and can
be connected through simple interpolation (Garipov et al., 2018). However,
they discovered that these modes are not connected by a linear path and
are connected by very simple curves, such as a polygonal chain with only
one bend (Draxler et al., 2018; Freeman & Bruna, 2016; Garipov et al., 2018).
The mode connectivity observation challenges the traditional belief that the
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loss landscape of deep neural networks is highly non-convex, with isolated
minima surrounded by high-loss regions. Mode connectivity has important
implications for optimization algorithms, as it suggests that there may exist
simpler ways to traverse the loss landscape and escape from local minima.
Linear Mode Connectivity. Nagarajan and Kolter (2019) is probably the
first example that considered linear mode connectivity (LMC) of trained MLPs
from the same initialization. They note that the resulting networks are
connected by linear paths of constant test error. Understanding LMC is
highly motivated by several direct conceptual and practical implications
from pruning and sparse training to distributed optimization and ensemble
methods.

The relationship between LMC and pruning was established by Frankle
et al. (2020) where they showed the correspondence between LMC and the
well-known lottery ticket hypothesis (LTH) (Frankle & Carbin, 2019a). In
short, LTH conjectures that neural networks contain sparse subnetworks
that can be trained in isolation, from initialization, or early in training to
achieve comparable test accuracy. Frankle et al. (2020) showed that solutions
that are linearly connected with no barrier have the same lottery ticket. They
further discuss how linear connectivity is associated with the stability of
SGD. This view suggests that SGD solutions that are linearly connected with
no barrier can be thought of as being in the same basin of the loss landscape
and once SGD converges to a basin, it shows a stable behavior inside the
basin1. Because of the direct correspondence between LMC and LTH, any
understanding of LMC has implications for LTH, the stability of SGD, and
pruning techniques.

Linear mode connectivity has also direct implications for ensemble meth-
ods. Linear mode connectivity between solutions allows for making en-
sembles through weight averaging. As discussed in Chapter 1, in weight
averaging the weights of multiple models are combined to create a single
model with potentially improved performance. In the context of linear mode
connectivity, it means that one can take the weights of two or more models
located at different minimizers in the loss landscape and compute a linear
combination of their weights, with the expectation that the resulting model
will also have a low loss. The existence of linear mode connectivity implies
that these low-loss pathways can be traversed by simply interpolating be-
tween the weights of different solutions. Consequently, it becomes possible
to create ensembles by averaging the weights of multiple models, without
the need for additional retraining or complex procedures.

1This notion of the basin is consistent with the definition proposed by Neyshabur et al.
(2020a) in Section 3.1
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3.2.1 Loss barrier

Let fθ(·) be a function presented by a neural network with parameter vector
θ that includes all parameters and L(θ) be the any given loss (e.g., train or
test error) of fθ(·). Let Eα(θ1, θ2) = L(αθ1 + (1− α)θ2), for α ∈ [0, 1] be the
loss of the network created by linearly interpolating between parameters
of two networks fθ1(·) and fθ2(·). The loss barrier B(θ1, θ2) along the linear
path between θ1 and θ2 is defined as the highest difference between the loss
occurred when linearly connecting two points θ1, θ2 and linear interpolation
of the loss values at each of them:

B(θ1, θ2) = sup
α
[L(αθ1 + (1− α)θ2)]− [αL(θ1) + (1− α)L(θ2)]. (3.4)

We say that two networks θ1 and θ2 are linear mode connected if the
barrier between them along a linear path is ≈ 0 (Frankle et al., 2020). It has
been observed in the literature that any two minimizers of a deep network
can be connected via a non-linear low-loss path (Draxler et al., 2018; Fort
& Jastrzebski, 2019; Garipov et al., 2018). This work examines linear mode
connectivity (LMC) between minima.

3.3 Empirical investigation of barriers

In this section, we investigate the impact of overparameterization on the
shape of the loss landscape. We specifically look into barriers between
different SGD solutions on all combinations of four architecture families
(MLP (Rosenblatt, 1961), Shallow CNN (Neyshabur, 2020a), ResNet (K. He
et al., 2015) and VGG (Simonyan & Zisserman, 2015)) and four datasets
(MNIST (LeCun & Cortes, 2010), SVHN (Netzer et al., 2011), CIFAR-10

(Krizhevsky et al., 2009) and CIFAR-100 (Krizhevsky et al., 2009)). The main
motivation to use Shallow CNN is to move from fully connected layers
(MLP) to convolutions. The main difference between Shallow CNN and
VGG16 is depth and the main difference between ResNet18 and VGG16 is
the existence of residual connections.

We empirically investigate how different factors such as architecture
family, width, depth, and task difficulty impact the barrier size2. We refer to
the training loss barrier as barrier.

Accuracy is more easily understood because it directly relates to the
percentage of correct predictions. In addition, the loss value may vary

2In all plots the barrier is evaluated across 5 different random pairs (10 random SGD
solutions). In our experiments, we observed that evaluating the barrier at α = 1

2 is a
reasonable surrogate for taking the supremum over α (the difference is less than 10−4).
Therefore, to save computation, we report the barrier value at α = 1

2 .
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Figure 3.1: Effect of width on barrier size (Entezari et al., 2021). From left to
right: one-layer MLP, two-layer Shallow CNN, VGG-16 and ResNet-18

architectures on MNIST, CIFAR-10, SVHN, CIFAR-100 datasets. For large
width sizes, the barrier becomes small. This effect starts at lower width
for simpler datasets such as MNIST and SVHN compared to CIFAR
datasets. A closer look reveals a similar trend to that of double-descent
phenomena. MLP architectures hit their peak at a lower width compared
to CNNs and a decreasing trend starts earlier. For VGG and ResNet, the
barrier size is saturated at a high value and does not change due to the
effect of depth as discussed in Figure 3.3.

depending on the specific problem and the choice of the model. It may not
be directly comparable between different models or even different problems.
Consequently, in the following, we plot the accuracy barrier instead of the
loss barrier similarly to Equation 3.4. using accuracy as a performance metric
allows for better comparison of results across different models and problem
domains. For loss barriers as well as train and test errors refer to Entezari
et al. (2021).

3.3.1 Effect of width

We evaluate the impact of width on the barrier size in Figure 3.1. We note
that for large values of width, the barrier becomes small. This effect starts at
lower width for simpler datasets such as MNIST and SVHN compared to
CIFAR datasets. A closer look reveals that the barrier increases with width
up to a point and beyond that increasing width leads to lower barrier size.
This effect is reminiscent of the double descent phenomena (Belkin et al.,
2019; Nakkiran et al., 2019). Figure 3.2 depicts train and test error on the left
while showing the barrier for MLP on the right. This figure indicates that in
our experiments the barrier peak happens at the same size that is needed to
fit the training data. Figure 3.1 shows that MLP architectures hit their barrier
peak at a lower width compared to CNNs and a decreasing trend starts
earlier. For ResNets, the barrier size is saturated at a high value and does
not change. The barrier value for VGG architecture on different datasets is
also saturated at a high value and does not change by increasing the width.
Such similar behavior observed for both ResNets and VGG architectures is
due to the effect of depth as discussed in the next paragraph.
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Figure 3.2: Deep double descent when looking at barrier (Entezari et al., 2021).
Left: Train and test error for MLP with one hidden layer across different
widths and datasets. Right: Train barrier for the same network. The
barrier increases with width up to a point and beyond that increasing
width leads to lower barrier size. This effect is reminiscent of the double
descent phenomena (Belkin et al., 2019; Nakkiran et al., 2019). Comparing
both plots reveals that the barrier peak happens at the same size that is
needed to fit the training data.

3.3.2 Effect of depth

We vary network depth in Figure 3.3 to evaluate its impact on the barrier
between optimal solutions obtained from different initializations. For MLPs,
we fix the layer width at 210 while adding identical layers as shown along the
x-axis. We observe a fast and significant barrier increase as more layers are
added. For the VGG architecture family we observe significant barriers. This
might be due to the effect of convolution or depth. In order to shed light on
this observation, we use Shallow CNN (Neyshabur, 2020a) with only two
convolutional layers. As can be seen in Figure 3.3 when Shallow CNN has
two layers the barrier size is low while keeping the layer width fixed at 210

and adding more layers increases the barrier size. For residual networks,
we also consider three ResNet architectures with 18, 34, and 50 layers and
observe the same barrier sizes as VGG for all these depth values. The main
overall observation from depth experiments is that for both fully-connected
and convolutional architectures, increasing depth increases the barrier size
significantly so the effect of depth is not similar to width. This can also
be attributed to the observations that deeper networks usually have less
smooth landscapes (H. Li et al., 2017).

3.3.3 Effect of task difficulty and architecture choice

In Figure 3.4 we look into the impact of the task difficulty provided by the
dataset choice (MNIST, SVHN, CIFAR-10, CIFAR-100, and ImageNet (Deng
et al., 2009)) and the architecture type (one-layer MLP with 210 neurons,
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Figure 3.3: Effect of depth on barrier size (Entezari et al., 2021). From left to right
MLP, Shallow CNN, VGG(11,13,16,19), and ResNet(18,34,50) architectures
on MNIST, CIFAR-10, SVHN, CIFAR-100 datasets. For MLP and Shallow
CNN, we fix the layer width at 210 while adding identical layers as shown
along the x-axis. Similar behavior is observed for fully connected and
CNN families, i.e., low barrier when the number of layers is low while we
observe a fast and significant barrier increase as more layers are added.
Increasing depth leads to higher barrier values until it saturates e.g., VGG
and ResNet

Shallow CNN with two convolutional layers and width of 210, VGG-16 with
batch-normalization, ResNet18 and ResNet50). Each row in the left and
middle figures in Figure 3.4 shows the effect of task difficulty, e.g., fixing
the task to SVHN and moving from MLP to Shallow CNN gives lower test
error hence lower barrier size. Each column also represents the effect of
architecture on a specific dataset, e.g., fixing the architecture to Shallow
CNN and moving from CIFAR10 to CIFAR100 presents an increase in test
error, hence an increase in the barrier size. Although deep architectures
like VGG16 and ResNet18 present low test error, the discussed effect of
depth saturates their barrier at a high level. Figure 3.4 right, aggregates
the correlation between test error and the size of the barrier. For MLP and
Shallow CNN, we observe a high positive correlation between test error
and barrier size across different datasets. Deeper networks (VGGs, ResNets)
form a cluster in the top-left, with low test error and high barrier size.

3.4 Role of invariance in loss barriers

Understanding the loss landscape of deep networks has proven to be very
challenging. One of the main challenges in studying the loss landscape
without taking the optimization algorithm into account is that there exist
many minima with different generalization properties. Most of such minima
are not reachable by SGD and we only know about their existence through
artificially-made optimization algorithms and training regimes (Neyshabur
et al., 2017). To circumvent this issue, we focus on parts of the landscape
that are reachable by SGD. Given a dataset and an architecture, one could
define a probability distribution over all solutions reachable by SGD and
focus on the subset in which SGD is more likely to converge.
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Figure 3.4: Effect of architecture choice and task difficulty on barrier size (Entezari
et al., 2021). Left: Barrier for different architectures and task difficulty.
Middle: Achieved test error. Each row in the left and middle figures
shows the effect of task difficulty while each column represents the effect
of architecture on a specific dataset. Right: Lower test error results in
a lower barrier for shallow networks. A pair of (architecture, task) has
a lower barrier if the test error is lower. Therefore, any changes in the
architecture or the task that improves the test error also improve the loss
barrier. The effect of depth is stronger than (architecture, task) which
leads to high barrier values for ResNets on MNIST, SVHN, CIFAR10,
CIFAR100, and ImageNet.

We say that a network is invariant with respect to a transformation if
and only if the network resulting from the transformation represents the
same function as the original network. There are two well-known invari-
ances: one is the unit-rescaling due to positive homogeneity of ReLU activa-
tions (Neyshabur et al., 2015) and the other is the permutation of hidden
units. Unit-rescaling has been well-studied and empirical evidence suggests
that implicit bias of SGD would make the solution converge to a stage
where the weights are more balanced (Neyshabur et al., 2015; X. Wu et al.,
2019). Since we are interested in the loss landscape through the lens of
SGD and SGD is much more likely to converge to a particular rescaling,
consideration of this type of invariance does not seem useful. However, in
the case of permutations, all permutations are equally likely for SGD and
therefore, it is important to understand their role in the geometric properties
of the landscape and its basins of attraction. Further investigation of other
optimization algorithms such as ADAM is left for future works.

3.4.1 Permutation invariance

We consider invariances that are in form of permutations of hidden units in
each layer of the network, i.e., each layer i with parameters Wi is replaced
with PiWiPi−1 where Pi is a permutation matrix and Pl = P0 is the identity
matrix. We use P to refer to the set of valid permutations for a neural
network and use π to refer to a valid permutation.
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Related work on permutation invariance. Permutation symmetry of neu-
rons in every layer results in multiple equivalent minima connected via
saddle points. Few studies investigate the role of these symmetries in the
context of the connectivity of different basins.

Given a network with L layers of minimal widths r∗1 , ..., r∗L−1 that reaches
zero-loss minima at r1!, ..., rL−1! isolated points (permutations of one an-
other), Şimşek et al. (2021) showed that adding one extra neuron to each
layer is sufficient to connect all these previously discrete minima into a
single manifold. Fukumizu and Amari (2000) prove that a point correspond-
ing to the global minimum of a smaller model can be a local minimum or
a saddle point of the larger model. Brea et al. (2019b) find smooth paths
between equivalent global minima that lead through a permutation point,
i.e., where the input and output weight vectors of two neurons in the same
hidden layer interchange. They describe a method to permute all neuron
indices in the same layer at the same cost. Tatro et al. (2020) showed that
aligning the neurons in two different neural networks makes it easier to find
second-order curves between them in the loss landscape where barriers are
absent.

3.5 Permutation invariance conjecture

As mentioned above, SGD’s implicit regularization balances weight norms
and, therefore, scale invariance does not seem to play an important role in
understanding the symmetries of solutions found by SGD. Consequently,
here we focus on permutation invariance and conjecture that taking it into
account allows us to have a much simpler view of SGD solutions. We first
state our conjecture informally:

Most SGD solutions belong to a set S whose elements can be permuted in such a
way that there is no barrier on the linear interpolation between any two permuted

elements in S .

The above conjecture suggests that most SGD solutions end up in the
same basin in the loss landscape after proper permutation. We acknowledge
that the above conjecture is bold. Nonetheless, we argue that coming up
with strong conjectures and attempting to disprove them is an effective
method for scientific progress. Note, our conjecture also has great practical
implications for model ensembling and parallelism since one can average
models that are in the same basin in the loss landscape. The conjecture can
be formalized as follows:

Conjecture 1. Let f (θ) be the function representing a feedforward network with
parameters θ ∈ Rk, P be the set of all valid permutations for the network, P :
Rk ×P → Rk be the function that applies a given permutation to parameters and
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returns the permuted version, and B(·, ·) be the function that returns barrier value
between two solutions as defined in Equation 3.4. Then, there exists a width h > 0
such that for any network f (θ) of width at least h the following holds: There exist
a set of solutions S ⊆ Rk and a function Q : S → P such for any θ1, θ2 ∈ S ,
B(P(θ1, Q(θ1)), θ2) ≈ 0 and with high probability over an SGD solution θ, we
have θ ∈ S .

3.6 A theoretical result

In this section, we provide elementary theoretical results in support of our
conjecture. Although the theoretical result is provided for a very limited
setting, we believe it helps us understand the mechanism that could give
rise to our conjecture. Bellow, we theoretically show that Conjecture 1 holds
for a fully-connected network with a single hidden layer at initialization.
For the proof refer to (Entezari et al., 2021).

Theorem 1. Let fv,U(x) = v⊤σ(Ux) be a fully-connected network with h hidden
units where σ(·) is ReLU activation, v ∈ Rh and U ∈ Rh×d are the parameters
and x ∈ Rd is the input. If each element of U and U′ is sampled uniformly
from [−1/

√
d, 1/
√

d] and each element of v and v′ is sampled uniformly from
[−1/

√
h, 1/
√

h], then for any x ∈ Rd such that ∥x∥2 =
√

d, with probability
1− δ over U, U′, v, v′, there exist a permutation such that∣∣∣ fαv+(1−α)v′′,αU+(1−α)U′′(x)− α fv,U(x)− (1− α) fv′,U′(x)

∣∣∣ = Õ(h−
1

2d+4 )

where v′′ and U′′ are permuted versions of v′ and U′.

Theorem 1 states that for wide enough fully-connected networks with
a single hidden layer, one can find a permutation that leads to having no
barrier at random initialization. Although, our proof only covers random
initialization, we believe with a more involved proof, it might be possible
to extend it to NTK regime (Jacot et al., 2018). The NTK (Neural Tangent
Kernel) regime refers to a phase in the training process of deep neural
networks where the network behaves linearly, particularly in the context of
infinitely wide networks.

3.7 Direct empirical evaluation

Another possible approach is to use brute-force (BF) search mechanism and
find the function Q for elements of S . The factorial growth of the number of
permutations with the size of hidden units in each layer hinders exhaustive
search for a winning permutation π to linear mode connect P(θ1, π) and θ2.
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Algorithm 2 Simulated Annealing (SA) for Permutation Search

1: procedure SA({θi}, i = 1..n, n ≥ 2) ▷ Goal: minimize the barrier
between n solutions

2: πi = π0, ∀i = 1..n
3: for k = 0; k < kmax; k++ do
4: T ← temperature( k+1

kmax
)

5: Pick random candidate permutations {π̂i}, ∀i = 1..n
6: if Ψ(P(θi, π̂i)) < Ψ(P(θi, πi)) then ▷ Ψ: barrier objective function
7: πi ← π̂i

return {πi}

Even for MLPs with just one hidden layer brute-force works in reasonable
time up to 24 neurons only, forcing the search to examine 24! ≈ 2 · 1013

permuted networks. This number grows as 1035160 for VGG-16 and 1055109

for ResNEt-50. For comparison, the number of atoms in the observable
universe is about 1082 (Ainsworth et al., 2022). For small networks, one
can use BF to find permutations between different models. However, small
size networks are not the focus of this paper, and Conjecture 1 specifically
mentions that.

3.8 Search algorithms for finding a winning
permutation

Given the size of the search space, using a more advanced search algorithm
can be useful. There exist different neuron alignment algorithms in the
literature. The issue with this approach is that since it relies on the strength
of a search algorithm if the search algorithm fails in finding the permutation,
one cannot be sure about the source of failure being the search algorithm or
the nonexistence of a permutation that leads to no barrier. In the following,
we first introduce three methods of neuron alignment in two networks and
then compare their performance in our setting.

3.8.1 Simulated Annealing (SA)

This method is often used in the literature, e.g., by Zhan et al. (2016),
to find a solution for a combinatorial search problem. SA performance
is, however, highly sensitive to the parameter choices, e.g., the minimum
and maximum temperatures, the cooling schedule, and the number of
optimization steps. The pseudocode of SA is shown in Algorithm 2. SA
takes a set of solutions {θi}, i = 1..n, n ≥ 2 as input (we use n = 5) and
searches for a set of permutations {πi} that reduce the barriers between all
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Figure 3.5: Performance of Simulated Annealing (SA) (Entezari et al., 2021). Two
Left: SA2 where we average the weights of permuted models first and ψ
is defined as the train error of the resulting average model. Two Right:
Search space is reduced i.e., we take two SGD solutions θ1 and θ2, permute
θ1 and report the barrier between permuted θ1 and θ2 as found by SA
with n = 2. When search space is reduced, SA is able to find better
permutations.

permuted (n
2) solution pairs. To find the best {πi}, in each step of SA the

current candidate permutations {π̂i}, i = 1..n are evaluated to minimize the
objective function Ψ. We use two versions of simulated annealing that vary
in their definition of Ψto evaluate the conjecture.

Simulated Annealing 1 (SA1) In the first version, Ψ is defined as the aver-
age pairwise barrier between candidate permutations B(P(θi, πi), P(θj, πj)),
i ̸= j.

Simulated Annealing 2 (SA2) In the second version SA2, we average the
weights of permuted models P(θi, πi) first and define Ψ as the train error
of the resulting average model. The simplest form of SA2 happens if n = 2.
The rationale behind these two versions is that if the solutions reside in one
basin, there is no barrier between them. Therefore averaging solutions in
one basin yields another solution inside their convex hull. Our empirical
results suggest that SA1 and SA2 yield very similar performance. However,
SA2 is significantly less computationally expensive, which makes it more
suitable for exploring larger models. In the following, we present the results
obtained with SA2 only and refer to this version as SA. For more details on
SA implementation see Entezari et al. (2021).

The left two plots in Figure 3.5 show that SA2 is not able to find permu-
tations that improve pair-wise barrier significantly. We know that SA does
not guarantee to find a solution and is known to lose its effectiveness on
Travelling Salesman Problem benchmarks beyond 1’000 cities (Zhan et al.,
2016). The effectiveness of SA is also reduced here as we can only evaluate
the cost of the full route (divide and conquer is not possible). One way
to increase this effectiveness is to reduce the search space which we will
discuss next.
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Search space reduction. In order to reduce the search space, here we only
take two SGD solutions θ1 and θ2, permute θ1 and report the barrier between
permuted θ1 and θ2 as found by SA with n = 2. The right two plots in
Figure 3.5 show this intervention helps SA to find better permutations. In
particular, the barrier improves significantly for MNIST and SVHN datasets
for both MLP and Shallow CNN across different widths. However, similar
to Section 2, we did not observe significant improvements when increasing
depth (see (Entezari et al., 2021) for evaluation of SA on deeper networks).

3.8.2 Functional Difference (FD)

X. He et al. (2018) proposed an algorithm that merges two models optimized
for two different tasks into one network for cross-model compression. The
compressed network does both tasks without losing too much accuracy on
each task. Their algorithm is based on layer-wise neuron sharing, which uses
a function of weights and post-activations to find which neurons could be
zipped together. They define a similarity measure, referred to as functional
difference (FD), of two neurons as follows:

δnA,nB =
1
2
(wA

l,i − wB
l,i) ·

(
(HA

l,i)
−1 + (HB

l,i)
−1)−1 · (wA

l,i − wB
l,i), (3.5)

where wA
l,i and wB

l,i are the weights of neurons i in layer l of two networks
A and B; HA

l,i and HB
l,i are layer-wise Hessian matrices. We use FD to match

neurons between two randomly initialized trained networks. Similarly to
the original paper (X. He et al., 2018) we use post-activation to approximate
Hessian matrices. Calculating the difference between each pair of neurons
gives a m×m matrix (m width of the network). In the second step, neurons
with a minimum distance are matched together in a greedy way, i.e., if ni,A
and nj,B have a minimum distance, row i and column j are removed from
the distance matrix.

We change the second step of FD and use the Hungarian algorithm (Kuhn,
1955a) to match two networks. We use the Python Scipy library (Virtanen
et al., 2020) and employ the cost matrix calculated in the first step of FD.
Figure 3.6 shows that FD outperforms simulated annealing in reducing the
original barrier. Hungarian implementation also improves FD performance.

3.8.3 Optimal Transport Fusion (OPT)

Singh and Jaggi (2020) suggest minimizing the transportation cost of neurons
present in the layers of individual models and measured by the similarity of
activations or incoming weights. The resulting layer-wise averaging scheme
can be interpreted as computing the Wasserstein barycenter, i.e., averaging
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Figure 3.6: Performance of neuron alignment algorithms: Simulated Annealing
(SA), Functional Difference (FD) and Optimal Transport Fusion (OPT).
Comparison for MLPs on different datasets (columns). OPT, closely
followed by FD, shows the best performance in finding a winning per-
mutation to reduce the barrier. Hungarian implementation also shows
slightly better performance than FD.

in the Wasserstein space of the probability measures defined at the corre-
sponding layers of the parent models (Agueh & Carlier, 2011). Formally,
let µ and ν be probability measures and let Π(µ, ν) denote the set of joint
probability measures with marginals µ and ν. The Wasserstein-p metric is
defined as:

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)
E

(x,y)∼π
(∥ x− y ∥p)

)1/p

, (3.6)

where the optimization searches for an optimal transport plan among all
transport plans π between two distributions with the cost being the Eu-
clidean p-norm.

3.8.4 Correlation of activations

Y. Li et al. (2015) propose to maximize the sum of correlations between the
activations of paired neurons across a batch of training data. That is, if we
let X(0)

l,i and X(1)
l,i be random variables corresponding to the activations of the

i-th hidden units of the l-th layer (across a batch of training data), then Y. Li
et al. (2015) proposes to optimize the permutation Pl to minimize following
cost:

∑
i

corr(X(1)
l,i , X(2)

l,Pl(i)
). (3.7)

This amounts to a linear sum assignment problem corresponding to the
matrix of correlations between pairs of hidden units in the two networks;
which can be solved via the Hungarian algorithm (Kuhn, 1955b). Tatro et al.
(2020) also perform alignment based on minimizing Equation 3.7, in order
to reduce the barrier to non-linear interpolation. Furthermore, they show
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Figure 3.7: Performance of neuron alignment using correlation of activations (Jor-
dan et al., 2022). Direct interpolation refers to naive interpolation between
two trained models without finding the permutation. Aligned interpo-
lation is the utilization of correlation for activations as the cost function
(Y. Li et al., 2015), followed by the implementation of the Hungarian
algorithm (Kuhn, 1955b). Aligned interpolation can significantly enhance
the performance of search algorithms aimed at identifying a winning per-
mutation. Nevertheless, as the network’s depth increases, the efficiency
of this approach declines rapidly, with ResNet-50 for ImageNet (right
bottom) showing scarcely any improvement.

using a proximal alternating minimization scheme that alignments found
using this method are nearly optimal for their purposes.

We note that for networks with residual connections, care must be taken
to restrict the set of permutations such that the function represented by the
network does not change. In particular, the same permutation of hidden
units must be applied to all layers which feed into a single residual stream.

Figure 3.7 depicts the utilization of correlation of activations (Y. Li et al.,
2015), followed by the implementation of the Hungarian algorithm (Kuhn,
1955b). While other search algorithms show poor performance, even for
one-layer MLP (Figure 3.6), this method makes zero barriers for 2 and
3-layer MLPs. However, as the network gets deeper, the efficiency of this
approach declines rapidly, with ResNet-50 for ImageNet showing scarcely
any improvement.

3.9 Identifying the problem: Variance Collapse

What causes a rapid drop-off in the performance of interpolated networks
which are deeper than a few layers? To answer this question, we investigate
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Figure 3.8: Variance collapse phenomenon in averaged networks (Jordan et al.,
2022). We find that the hidden units of weight-space averaged neural
networks suffer from variance collapse: as we progress through the
network, the variance of neuron activations reduces, with neurons in
deeper layers becoming nearly constant while varying the input data.
Before REPAIR refers to networks that are interpolated from endpoint
networks whose hidden units have been aligned (Ainsworth et al., 2022;
Y. Li et al., 2015; Singh & Jaggi, 2020), before our correction method
REPAIR is applied. REPAIR is applied on top of this baseline in order to
restore the internal statistics of averaged networks back to the level of
the endpoint networks.

the internal behavior of such networks, focusing on the statistics of hidden
units (Figure 3.8). We find that for deep MLPs, interpolated from a pair of
aligned endpoint networks which both have high accuracy on the MNIST
test-set, hidden units undergo a variance collapse. That is, the variance of
their activations progressively decays as we move deeper into the network,
with the activations of later layers becoming nearly constant. For each layer,
we quantify this decay as follows. First, we measure the variance of the
activations of each neuron across a batch of training data. We then take the
sum of this variance across each neuron in the layer. Finally, if we let this
sum be denoted vα, v1, v2 for the interpolated and two endpoint networks,
respectively, then we report the ratio vα

(v1+v2)/2 . We compute this ratio for
each layer in the network, giving a sequence of values which we report in
Figure 3.8 (left). For the set of variances of each neuron in a single layer of
an interpolated ResNet18, see Figure 3.9 (left).

We observe that variance decays to nearly zero by the final layer of an
interpolated 35-layer MLP, indicating that the activations in these last layers
have become nearly constant. This effect seems to be further exacerbated
when directly interpolating between unaligned networks. We repeat this
experiment for VGG (Simonyan & Zisserman, 2015) and ResNet-50 archi-
tectures, trained on CIFAR-10 and ImageNet respectively, and find that
variance by the final layers decays by more than 10× (Figure 3.8 (middle)
and Figure 3.8 (right)). This is a problem: if these networks have nearly
constant activations in their final layers, then they will no longer even be
able to differentiate between inputs.
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3.9.1 Why does the variance collapse phenomenon occur?

We argue that this phenomenon can be understood through the following
statistical calculation. Consider a hidden unit or channel in the first layer of
the interpolated network. Such a unit will be functionally equivalent to the
linear interpolation between the respective units in the endpoint networks.
That is, if we represent the unit’s pre-activation by Xα in the interpolated
network, and X1, X2 in the two endpoint networks (as random variables over
the input data distribution), then the equality Xα = (1− α)X1 + αX2 holds.
We will argue that the variance of Xα is typically reduced as compared to
that of X1 or X2.

If the two endpoint networks are perfectly aligned and have learned the
same features, then we should have corr(X1, X2) = 1. But in practice, it is
more typical for pairs of aligned units (whose alignment minimizes the cost
function given by Equation 3.7) to have a correlation of corr(X1, X2) ≈ 0.4.
When considering the midpoint interpolated network (α = 0.5), the variance
of Xα is given by

Var(Xα) = Var
(

X1 + X2

2

)
=

Var(X1) + Var(X2) + 2Cov(X1, X2)

4

=
std2(X1) + std2(X2) + 2 · corr(X1, X2) · std(X1)std(X2)

4

=

(
std(X1) + std(X2)

2

)2

− (1− corr(X1, X2))

2
std(X1)std(X2).

We typically have std(X1) ≈ std(X2), so that this simplifies to Var(Xα) =
(0.5 + 0.5 · corr(X1, X2)) ·Var(X1). With our typical value of corr(X1, X2) ≈
0.4 for aligned networks, this yields Var(Xα) = 0.7 ·Var(X1): a 30% reduc-
tion compared to the endpoint networks. This analysis cannot be rigorously
extended to deeper layers of the interpolated network, but intuitively we
expect this decay to compound with depth. This intuition matches our exper-
iments, where we see that variance collapse becomes worse as we progress
through the layers of MLP, VGG, and ResNet-50 networks (Figure 3.8).

3.10 REPAIR

We propose two methods for addressing variance collapse. Both aim to cor-
rect the statistics of hidden units in the interpolated network. We call these
methods REPAIR (REnormalizing Permuted Activations for Interpolation
Repair).
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Given an interpolated network θα = (1− α) · θ1 + α · θ2 for some 0 < α < 1
(with aligned endpoint networks θ1, θ2), we select the set of hidden units or
channels whose statistics we aim to correct. For example, for VGG networks
we correct the pre-activations of every convolutional layer. For ResNets, we
correct both these convolutional pre-activations and the outputs of each
residual block.

Our goal will be to compute a set of affine (rescale-and-shift) coefficients
for every selected channel, such that the statistics of all selected channels are
corrected. Let us consider a particular channel, e.g., the 45th convolutional
channel of the 8th layer in an interpolated ResNet18. Similar to the analysis
in the last section, let X1 and X2 be the values of the channel in the two
endpoint networks, viewed as random variables over the input training data,
and let Xα be the same channel in the interpolated network. Then we want
the following two conditions to hold:

E[Xα] = (1− α) ·E[X1] + α ·E[X2], (3.8)
std(Xα) = (1− α) · std(X1) + α · std(X2). (3.9)

Before any correction, we typically have std(Xα) ≪ min(std(X1), std(X2))
due to variance collapse. In the following, we present two algorithms to
compute the appropriate sets of affine coefficients for each selected channel,
in order to induce these conditions. Both algorithms depend upon the com-
putation of the statistics E[X1], E[X2], std(X1), std(X2) for each selected
channel in the endpoint networks.

3.10.1 Closed-form approximate variant

We first present an efficient, approximate algorithm that computes the
desired affine coefficients without using forward-passes in the interpolated
network. Consider a hidden unit in the first layer of the interpolated network.
As before, let Xα represent the unit in the interpolated network, and X1, X2
the same unit in the two endpoint networks, respectively. Condition (3.8)
will already be satisfied for this unit by virtue of the equation Xα = (1−
α) · X1 + α · X2. Given the values Var(X1), Var(X2), and Cov(X1, X2), it is
possible to compute the variance of Xα exactly according to the formula

Var(Xα) = (1− α)2Var(X1) + α2Var(X2) + 2α(1− α)Cov(X1, X2). (3.10)

Therefore, to satisfy condition (3.9) for this unit, the rescaling coefficient β
must be

β =
(1− α) · std(X1) + α · std(X2)√

(1− α)2Var(X1) + α2Var(X2) + 2α(1− α)Cov(X1, X2)
,

which is simply the desired standard deviation divided by the standard
deviation of Xα. For each unit in the first layer, this factor is exactly correct
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Figure 3.9: REPAIR restores the internal statistics of averaged neural networks
(Jordan et al., 2022). Left: We visualize the statistics of different channels
in 9th layer of an interpolated ResNet18 on CIFAR-10. The uncorrected
network undergoes variance collapse, whereas REPAIR restores the in-
ternal statistics of the network to be similar to the endpoint networks.
Middle: After applying REPAIR, internal statistics are restored, and the
barrier is reduced to 1.5% for CIFAR-10. Right: Permuted interpolation
without a statistical correction (before REPAIR) only performs well when
limited to MLPs of a few layers (Entezari et al., 2021). REPAIR enables
high-performance weight-space averaging between much deeper aligned
MLPs.

in order to obtain the desired statistics. For deeper layers, this factor is an
approximation that we empirically test.

In Figure 3.9 (right), we apply this rescaling to every hidden unit of MLPs
of depth between 2 and 50 hidden layers, which are linearly interpolated
(α = 0.5) between aligned endpoints networks trained on MNIST. We
find that this rescaling significantly improves the performance of such
interpolated networks. In particular, we obtain interpolated checkpoints of
up to 27 layers that achieve over 90% accuracy, whereas, without a correction,
we hit this limit after only 6 layers.

We note that this correction requires forward passes in the endpoint net-
works in order to compute the values of Var(X1), Var(X2), and Cov(X1, X2)
for each hidden unit. Once these values have been computed, correction
coefficients to interpolated networks across the arbitrary choice of interpola-
tion coefficient α can be generated without requiring any further forward
passes.

3.10.2 Forward-pass exact variant

The rescaling coefficients generated by the above algorithm are approximate,
only being guaranteed to induce the desired conditions (3.8), (3.9) for hidden
units or channels in the first layer of an interpolated network. We find that
it is effective for the case of deep MLPs, but in our experiments, it was
insufficient to significantly reduce the interpolation barrier for more chal-
lenging cases like ResNet-50 trained on ImageNet. We now propose an exact
algorithm, which uses forward passes in the interpolated networks in order
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to generate affine (rescale-and-shift) parameters for every channel in the
network that we aim to correct. This method outperforms the approximate
variant, especially for challenging cases.

The exact method proceeds as follows. For each module in the interpolated
network whose outputs we have identified as targets for statistical correction,
we apply a wrapper (for the PyTorch pseudocode see Jordan et al. (2022)).
This wrapper adds a Batch Normalization layer after the wrapped module
which is initially set to “train” mode. As a recall, batch normalization consists
of two steps: normalization and affine transformation. The normalization
step normalizes the input data to a layer by adjusting and scaling it based on
the mean and variance of the data within a mini-batch. This helps to mitigate
the effects of internal covariate shift and makes it easier for the subsequent
layers to learn the representations of the data. The affine transformation
step involves applying a linear transformation to the normalized data. This
step allows the network to learn the appropriate scaling and shifting of the
normalized data for each layer (Davis & Frank, 2022).

Each added BatchNorm layer also contains affine (i.e., per-channel rescale-
and-shift) parameters. For a given channel incoming to the BatchNorm layer,
we set the respective affine weight to (1− α) std(X1) + α std(X2) and the
bias to (1− α)E[X1] + α E[X2], where X1 and X2 are the respective channels
in the endpoint networks as in conditions (3.8), (3.9).

With the added BatchNorm layers in training mode, these affine parame-
ters will exactly induce our statistical conditions with respect to batches of
input data. The reason for this is that during execution, the added Batch-
Norm layers first renormalize their inputs to have zero mean and unit
variance per channel, and then apply our given affine transformation which
sets the statistics of the output to be that of conditions (3.8), (3.9). Next, we
pass a set of training data through the network (∼5,000 examples suffices)
so that the running mean and variance parameters of our added BatchNorm
layers will be accurately estimated. During this pass, any BatchNorm layers
which already existed in the original network are kept frozen. Finally, we
set the added BatchNorm layers to evaluation mode, so that they behave as
affine layers which do not recompute statistics. At this point, the resulting
network is functionally equivalent to one in which the weights of our se-
lected set of channels have been rescaled and biases shifted. If we wish to
generate a new parameter vector θ′α which is compatible with the original
network architecture (i.e., lacks these added BatchNorm layers), then we can
perform BatchNorm layer fusion (Markuš, 2018) in which appropriate rescal-
ing and bias-shifting values are computed from each added BatchNorm
layer and then applied to the preceding convolutional filters.

The networks resulting from this process have their internal statistics
corrected so that all selected channels satisfy conditions (3.8), (3.9). In
Figure 3.9 (left) we observe that REPAIR has resolved variance collapse.
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In Figure 3.9 (middle) we apply REPAIR to networks where the weights
are linearly interpolated between a pair of ResNet18s whose hidden units
have been brought into alignment. Before the correction, networks near
the midpoint have a reduced accuracy of 66.0% on the CIFAR-10 test set,
while the endpoints accuracy is 95.5%. After correction, all checkpoints
along the linear path have significantly boosted accuracy, with the midpoint
performing at 94.1%. In comparison, (Singh & Jaggi, 2020) report a linear
midpoint accuracy of 77.0% using strong optimal-transport based alignment
methods to improve over the baseline.

3.11 Effectiveness of REPAIR

In this section, we extend the results on the effectiveness of REPAIR across
a wider range of scenarios. We apply REPAIR to (interpolations between
aligned) ResNets trained on ImageNet. (Section 3.11.1) We also perform a
replication using REPAIR of an experiment from (Ainsworth et al., 2022), in
which a pair of models trained on disjoint subsets of data is constructively
merged. (Section 3.11.2). For more experiments on studying the relationship
between width and depth with barrier size, as well as a comparison between
different normalization techniques e.g., BatchNorm (Ioffe & Szegedy, 2015),
LayerNorm (Ba et al., 2016), and Fixup (H. Zhang et al., 2019) refer to Jordan
et al. (2022).

3.11.1 REPAIR for ImageNet

Next, we explore the impact of REPAIR on the barriers to interpolation
between standard ResNet models trained from scratch on ImageNet (Deng
et al., 2009). We test ResNet18, ResNet-50, and a double-width variant of
ResNet-50 in Figure 3.10 (right). Without REPAIR, the interpolated midpoints
between each aligned pair of networks perform at below 1% accuracy on the
ImageNet validation set. After REPAIR, the midpoint ResNet18 improves to
41.1%, ResNet-50 to 56.5%, and double-width ResNet-50 to 64.2%.

We find in Figure 3.10 (left) that it is important to apply REPAIR not just
to all convolutional layer outputs, but also to the outputs of every residual
block. For the case of ResNet-50, using REPAIR with these extra channels
boosted the performance of the midpoint from 53.2% to 56.5%, which is a
14% reduction in the size of the barrier (from 23.4% to 20.1%). We note that
for architectures that contain BatchNorm after every convolutional layer,
applying REPAIR only to convolutional layer outputs is mathematically
equivalent to resetting the BatchNorm statistics of the network. Performing
such a reset on averaged networks goes back to (Izmailov et al., 2018),
but as far as we are aware, has not been applied to interpolation between
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Figure 3.10: REPAIR significantly reduces barrier between ResNet-50s trained on
ImageNet (Jordan et al., 2022). Left: Without REPAIR, interpolations
between two aligned, independently trained ResNet-50s attain less than
1% test accuracy on ImageNet. After applying REPAIR to convolutional
layer outputs, the midpoint is boosted to 53.2%. Using full REPAIR,
which is also applied to the outputs of residual blocks, this is further
boosted to 56.5%. Right: Larger and wider ResNet architectures have
a smaller barrier. Dashed lines indicate the baseline of interpolation
between aligned networks (Ainsworth et al., 2022; Singh & Jaggi, 2020),
and solid lines refer to REPAIR on top of the baseline.

independently trained networks until now.
In general, the barriers for these architectures on ImageNet are still rela-

tively high. The standard ResNet-50 architecture has a final-block bottleneck
width of 1024, and we measure the barrier after REPAIR to be 20.1% in
terms of test error. The double-width ResNet-50 variant has a final-block
bottleneck width of 2048, reducing the barrier to 12.9%. In comparison, the
widest ResNet20 we studied on CIFAR-10 had final-layer width of 1024 and
a barrier of nearly zero. Therefore, it may be the case that for more difficult
datasets, larger widths are required in order to reach low barriers.

3.11.2 Split data training

In this section, we study the setting where two endpoint networks are
trained on disjoint splits of the training dataset. We aim to replicate the
corresponding experiment of (Ainsworth et al., 2022), but using REPAIR
applied to standard BatchNorm networks.

We first split the CIFAR-100 training set, consisting of 50,000 images
distributed across 100 classes, into two disjoint sets of 25,000 images. The
first split to consists of a random 80% of the images in the first 50 classes,
and 20% of the images in the second 50 classes, with the second split having
the proportions reversed. We then train two networks, one for each split.
The result is that one network is more accurate in the first 50 classes, and
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Figure 3.11: Split data training (Jordan et al., 2022). When two networks are trained
on disjoint, biased subsets of CIFAR-100, their REPAIRed interpolations
outperform either endpoint with respect to the combined test set.

the other is more accurate in the second, with both performing worse than
either their ensemble or a network trained on the full training set.

We next align the hidden units of these two networks and generate a
series of linearly interpolated networks between the two, applying REPAIR
to each (Figure 3.11). We find that many of these interpolated networks
significantly outperform either of the two endpoints in terms of loss on
the full CIFAR-100 test set. In this sense, the endpoint networks can be
said to have been constructively merged. The best interpolated network of
(Ainsworth et al., 2022) was reported to obtain a loss of 1.73 at α ≈ 0.3.
Using REPAIR, our best interpolated network achieves a test loss of 1.30,
also with mixing coefficient α = 0.3. We attribute this improvement partially
to REPAIR, and partially to the increased performance of standard ResNets
compared to the LayerNorm-based variants used in (Ainsworth et al., 2022).

3.12 Conclusion

In this chapter, we tried to understand the loss landscape of neural networks
and its implications on model generalization. We explored the geometric
structure of the loss landscape based on the connectivity of neural net-
works, the role of overparameterization on the loss landscape shape, and
the invariances of neural networks. We conjectured that by accounting for
permutation invariance, barriers between different solutions in the loss land-
scape can be eliminated, with all solutions residing in the same basin. We
approached the permutation invariance conjecture from both theoretical
and empirical views, supporting our conjecture. We also explored various
neuron alignment algorithms and compared them in finding permutations
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to match two different trained neural networks. We later used a feature
alignment method and observed the variance collapse phenomenon as the
key behind the drop performance between aligned interpolated networks.
To address the variance collapse problem we proposed REPAIR, a method
that significantly improves the performance of these networks across various
architectures and datasets. Our results provide support for our conjecture
and contribute to understanding the underlying causes of the variance col-
lapse phenomenon. Moreover, our REPAIR algorithm removed the barrier
for many deep neural networks trained on various datasets. To the best of
our knowledge, our reported barriers for ResNet-50s trained on ImageNet
are the lowest reported in the community.

In conclusion, our exploration of the loss landscape of neural networks
and the role of permutation invariance has provided valuable insights into
improving generalization and the design of more efficient algorithms for
initialization, ensembling, and distributed training. Although there are limi-
tations to our study, the results obtained thus far offer a strong foundation
for future research. By extending our findings to other tasks and addressing
the computational challenges in searching the loss landscape, we can further
enhance the capabilities of neural networks and their applications in various
domains.
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4 Pre-training and
Generalization

Neural networks are heavily dependent on data, which provides the essential
input for training and refining these powerful models. Data holds immense
significance in the context of neural networks, as it lays the foundation for
improving their performance.

Edge devices operate in diverse environments with varying conditions,
making distribution shift a significant concern for their performance. In
other words, the data distribution may change over time, leading to in-
accuracies and discrepancies in models trained on such data. In Chapter
1, we introduced out-of-distribution generalization and briefly examined
the roles of data augmentation and pre-training in enhancing performance.
In this chapter, we begin by investigating the root cause behind the out-
of-distribution performance drop and discuss advances made to improve
out-of-distribution generalization. Motivated by the success of multimodal
learning, we explore various multimodal architectures in Section 4.1.1 as
well as multimodal datasets and the disparities concerning their sample
sizes, sources, and caption cleanliness in Section 4.1.2.

We proceed to examine the influence of pre-training data distribution on
transfer performance in Section 4.2. Transfer learning has gained popularity
as a solution for tackling the challenges posed by limited labeled data in
edge applications. In Section 4.5, we introduce various research questions
concerning the role of data in transfer learning and address these questions
through large-scale experiments, employing diverse combinations of pre-
training and transfer datasets.

4.1 Background

In practice, poor performance on out-of-distribution inputs happens mostly
because the data collection includes noise/error, practical test conditions
change drastically/dynamically, or deliberate perturbations are applied to
the input data. Such changes may include image corruptions e.g., blurring,
contrast/brightness, JPEG, adversarial examples, geometric transformations
e.g., rotations, etc.. Given a trained model, we can plot its in-distribution
performance on the X-axis and its out-of-distribution performance on the
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Y-axis. We consider a model robust to distribution shifts if it achieves
a consistent in-distribution (ID) and out-of-distribution (OOD) accuracy.
Figure 4.1 shows such a plot, where y = x line illustrates the expected
robust performance. However, in practice, we observe a gap between ID
performance and OOD performance. Recht et al. (2019) investigated the
cause for this accuracy drop and decomposed such a gap as the sum of
overfitting (in case of test set re-use), distribution shift, and generalization
error. Equation 4.1 illustrates this decomposition:

ÂccS( f )− ̂AccS′ ( f )︸ ︷︷ ︸
IDacc − OODacc

= ÂccS( f ) − AccD( f )︸ ︷︷ ︸
overfit through testset reuse

+ AccD( f ) − AccD′ ( f )︸ ︷︷ ︸
distribution shift

+ AccD′ ( f ) − ̂AccS′ ( f )︸ ︷︷ ︸
generalization error

(4.1)

Samples S and S
′

are draws from distributions D and D
′
, respectively. The

expression on the left-hand side of the Equation 4.1 presents the performance
gap between ID and OOD. ÂccS( f ) represents the mean-accuracy over
samples S, as shown in Equation 4.2.

ÂccS( f ) =
1
|S| ∑

(x,y)∈S
1[ f (x) = y] and AccD( f ) = E(x,y)∼D1[ f (x) = y]

(4.2)

The first term on the right-hand side of the Equation 4.1 attributes the gap
between ID accuracy and OOD accuracy to overfitting due to the test set re-
use. Overfitting due to test set reuse happens when the trained models have
been adapted to the specific samples in the original test sets, for example
via extensive hyperparameter tuning. Figure 4.1 (Left) illustrates that when
test set reuse occurs, overfitting is likely to happen, leading to a larger
discrepancy between ID and OOD performance. However, Figure 4.1 (right)
(Recht et al., 2019) shows that the gap between ID and OOD performance
shrinks for higher accuracy levels on CIFAR-10, showing that the root cause
for such performance drop is not overfitting to the test set reuse. In practice,
the generalization error term (AccD′ ( f )− ̂AccS′ ( f )) is also small. Therefore,
the main cause for the gap between ID accuracy and OOD accuracy should
come from the remaining distribution shift term in Equation 4.1.

Various techniques can be employed to compensate for performance drop
when distribution shifts happen. Data augmentation increases the diversity
of the training data by applying different transformations to the input
data and therefore improves OOD accuracy. Domain adaptation is another
approach, which involves training the network on data similar, but not
identical, to the target domain, enabling the network to adapt to new data
while preserving its performance on the training data.
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Figure 4.1: Overfit is not causing the out-of-distribution performance drop. Left:
A sketch presenting the effect of overfit. X-axis shows the ID and Y-axis
presents the OOD. The gap between ID and OOD should increase as
the accuracy increase. Right: What actually happens when ID is original
CIFAR-10 and OOD is new created CIFAR-10 (Recht et al., 2019). The
gap between ID and OOD shrinks, showing that the root cause for such
performance drop is not overfitting to test set reuse.

Taori et al. (2020) investigate various interventions to improve OOD gener-
alization. Figure 4.2 summarizes these interventions on ImageNet (Deng et
al., 2009) as ID dataset and ImageNet-v2 (Recht et al., 2019) as OOD dataset.
Standard training refers to models trained on the ImageNet-ILSVRC 2012

training set without a specific robustness focus, from AlexNet (Krizhevsky
et al., 2017) to VGGs (Simonyan & Zisserman, 2015), ResNets (K. He et al.,
2016), and EfficientNet (Szegedy et al., 2015; Tan & Le, 2019).

Robustness interventions refer to models that are trained with explicit
robustness interventions such as adversarially robust models (Cohen et al.,
2019; Salman et al., 2019; Shafahi et al., 2019; C. Xie et al., 2019), models
with special data augmentation such as AugMix (Hendrycks et al., 2019),
CutMix (Yun et al., 2019), MixUp (H. Zhang et al., 2017) , and models with
architecture modifications (R. Zhang, 2019).

Figure 4.2 shows that there exist some models that deviate from the linear
fit trend. The small outliers to the linear fit trend are those models trained
with orders of magnitude larger data than the standard ImageNet training
set e.g., models trained on the full ImageNet dataset of 21,841 classes (W.
Wu, n.d.), YFCC 100 million dataset (Yalniz et al., 2019), Google’s JFT 300

million dataset (Sun et al., 2017; Q. Xie et al., 2020), or 1000× more data with
1 billion Instagram images (Mahajan et al., 2018; Q. Xie et al., 2020). These
models show only small gains, in the best case improving the accuracy drop
from 8.6% to 7.5% on ImageNetV2 for EfficientNet-L2 NoisyStudent (Q. Xie
et al., 2020).
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Figure 4.2: Overview of different methods to improve out-of-distribution general-
ization (Taori et al., 2020). Standard training refers to models trained on
the ILSVRC 2012 training set without a specific robustness focus, from
AlexNet (Krizhevsky et al., 2017) to VGGs (Simonyan & Zisserman, 2015),
ResNets (K. He et al., 2016), and EfficientNet (Szegedy et al., 2015; Tan &
Le, 2019). Robustness interventions refer to models that are trained with
explicit robustness interventions such as adversarially robust models
(Cohen et al., 2019; Salman et al., 2019; Shafahi et al., 2019; C. Xie et al.,
2019), and models with special data augmentations (DeVries & Taylor,
2017; Engstrom et al., 2019; Geirhos et al., 2018; C. Xie et al., 2020). Mod-
els trained on orders of magnitude larger than the standard ImageNet
training set show a small improvement above the linear fit and closer to
y = x. Two trained CLIP models (Radford et al., 2021) with ResNet-50

(K. He et al., 2016) and ViT-B/32 (Dosovitskiy et al., 2020) backbones
show the best performance under distribution shift.

However, there are two points in Figure 4.2 that are largely separated
from the linear fit and are closer to y = x. These points are CLIP (Radford
et al., 2021) models that have shown impressive performance under distri-
bution shifts. Radford et al. (2021) leveraged the power of both image and
text modalities to jointly learn image and text representations in a shared
latent space. During the pretraining phase, CLIP learns to associate images
and their corresponding textual descriptions by optimizing a contrastive
loss function. The model is trained to maximize the dot product similar-
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Figure 4.3: Overview of multimodal pre-training architectures (Nematzadeh, 2021) Left:
Multimodal transformers use three types of loss and usually, each image is
processed by an object detector Middle: In Dual Encoders, image and language
modalities are processed separately, without any multimodal attention, i.e., we
can process image and language inputs, cache the features, and reuse them
across pairs. Therefore dual Encoders are usually easier to scale, but they do
not have the notion of multimodal cross attention, where the model learns to
attend over both modalities. Right: Encoder Decoders models, also known as
captioning models, process image and language and predict language.

ity between the embeddings of the corresponding image-text pairs while
minimizing it for non-matching pairs. Later Fang et al. (2022) investigated
the key success behind CLIP OOD robustness to understand if contractive
loss, language supervision, or the new dataset is the reason for the im-
proved OOD performance. They found that data distribution plays the most
important role in CLIP’s robust performance.

4.1.1 Multimodal architectures

Motivated by CLIP’s success, there has been a surge in interest in using
multi-modal architectures. Multimodal architectures integrate multiple data
types to enhance AI versatility and adaptability (Bai et al., 2018; Baltrušaitis
et al., 2018). These models have demonstrated improvements in tasks like
zero-shot learning, image classification, and natural language understanding
(Radford et al., 2021) Multimodal datasets can be gathered from internet
on a large scale, offering abundant and varied data that can be utilized to
enhance the performance of models (Radford et al., 2021).

Figure 4.3 depicts different architectures used for multimodal pre-training.
Dual encoders (Srivastava & Salakhutdinov, 2012) consist of separate en-
coders for each modality, which are then combined through a shared latent
space e.g., CLIP. Multimodal transformers (J. Lu et al., 2019) are exten-
sions of the standard transformer architecture, designed to handle multiple
modalities simultaneously. They are characterized by a single encoder that
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processes different modalities jointly, allowing the model to learn cross-
modal interactions and representations more effectively. Encoder-decoder
(Cho et al., 2014) architectures consist of separate encoders and decoders
for each modality. The encoder processes the input modality, and the de-
coder generates the output modality. This architecture is particularly useful
for tasks that require generating output in one modality given input from
another, such as image captioning. Hendricks et al. (2021) and Miech et al.
(2021) explored different architectures used for multimodal pretraining in
the context of zero-shot domain transfer. They observed that given the same
amount of pre-training data and evaluated on zero-shot retrieval, dual en-
coders (such as CLIP) perform better than multimodal transformers (joint
encoders) and encoder decoders.

4.1.2 Multimodal datasets

Multimodal image and text datasets are valuable resources as they provide
a rich source of information for the training and evaluation of machine
learning algorithms. Figure 4.1 shows a list of more common multimodal
datasets, where they differ in the number of samples, what is their source,
and how clean their captions are.

SBU captions (Ordonez et al., 2011) is sourced from Flickr and features
human-generated annotations. MS-COCO (Lin et al., 2014) is composed
of images, each accompanied by five human-generated captions that have
undergone specific filtering procedures to ensure high-quality images and
annotations. Conceptual Captions (Sharma et al., 2018) is created by ex-
tracting images and their alt-text HTML attributes from the internet and
annotating these images with refined descriptions. In addition to these
datasets, visual question-answering tasks also serve as a data source for
many image and text datasets, which are often structured in nature. A
prominent large-scale dataset in this context is Visual Genome (Krishna
et al., 2017), which contains a wealth of information in its structured data
format.

Datasets like MS-COCO and WIT (Srinivasan et al., 2021) are considered
to have low noise because they have been manually annotated or have cap-
tions that come from relatively reliable sources, such as Wikipedia articles.
As a result, they generally contain cleaner and more informative captions.
Datasets like Visual Genome and Conceptual Captions are considered to
have medium noise. These datasets might have some inaccuracies or inconsis-
tencies in the annotations or captions, either due to the automated extraction
process (e.g., Conceptual Captions) or the complexity of the annotations (e.g.,
Visual Genome). Datasets like SBU Captions and LAION (Schuhmann et al.,
2022) are considered to have high noise because they rely on user-generated
captions or tags, which can be noisy, inconsistent, or even irrelevant to the
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image content.
The availability of larger sample sizes in noisier datasets offers both chal-

lenges and opportunities for the development of multimodal models. As the
volume of data increases, the potential for discovering meaningful patterns
and relationships between images and text also grows. This increased dataset
size can help improve the generalization capabilities of models by exposing
them to a broader range of examples, leading to better performance on
unseen data. Moreover, the diversity in data arising from various sources,
including user-generated content, provides a more realistic representation
of real-world scenarios that AI systems are likely to encounter. However, the
presence of noise in these larger datasets necessitates the development of
more sophisticated techniques to handle the inherent inconsistencies and
inaccuracies (F.-L. Chen et al., 2023).

Several efforts have been made to understand the disparities between
multimodal datasets concerning their performance on image recognition
tasks. These studies aim to analyze the impact of different dataset character-
istics, such as size, noise level, and annotation quality, on the effectiveness
of models trained on these datasets Hendricks and Nematzadeh (2021)
examined MS-COCO, MS-COCO-narrative, and Visual Genomes, contain-
ing a fairly equal number of images. They observed that these datasets
exhibit differing levels of performance when tested on Flickr30K (Young
et al., 2014). In particular, although MS-COCO and MS-COCO-narrative
share identical images, their distinct captions lead to varied outcomes. The
authors observe that the language similarity between MS-COCO and Flickr
is greater. They utilized perplexity (Chiusano, 2022) to measure language
similarity. Perplexity, at a high level, quantifies the uncertainty of a lan-
guage model when predicting the next word in a sequence. Hendricks and
Nematzadeh (2021) pre-trained a multimodal transformer on Conceptual
Captions and MS-COCO and test the performance of these trained models
on two datasets, namely SVO (subject-verb-object) and FOIL (noun under-
standing) (Hendricks et al., 2021; Hendricks & Nematzadeh, 2021). They
observed that MS-COCO with less noisy samples outperforms Conceptual
Captions on both SVO and FOIL. The SVO dataset consists of image-caption
pairs with simple subject-verb-object structures, focusing on the model’s
ability to understand the relationships between objects and actions in an
image. The FOIL dataset is designed to evaluate models’ understanding
of the relationships between nouns and verbs in image-caption pairs. In
this dataset, the authors create captions by replacing a single noun with
an incorrect one while keeping the rest of the caption intact. The task is to
identify the incorrect noun in the FOIL caption.
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Dataset Name Sample image Sample caption Size Caption
Noise
Level

Source

MS-COCO (Lin et al.,
2014)

a dog on the beach with some
people who also have a surf-
board

∼ 330K low Flickr

MS-COCO-
narratives

In this image we can see a bridge
and sea. In the background, we
can see trees and the sky. We
can see so many people on the
bridge. At the bottom of the im-
age, we can see two people. We
can see stairs in the right bottom
of the image ...

∼ 2K low Flickr

Visual Genome (Kr-
ishna et al., 2017)

small round yellow frisbee, man
has cast on his arm, concrete trail
path in the park, man searing
black sunglasses

∼ 108K medium Flickr,
Google
Images

Conceptual Captions
(Sharma et al., 2018)

The scenic route through moun-
tain ranges includes these unbe-
lievably colored mountains.

∼ 12M medium alt-text
from dif-
ferent
webpages

SBU captions (Or-
donez et al., 2011)

King Arthur’s beheading rock -
right on the sidewalk in the mid-
dle of town

∼ 1K high Flickr

Redcaps (Desai et al.,
2021)

the kids got t-shits ∼ 11M medium Reddit

YFCC (Thomee et al.,
2016)

CHELSEA FOOTBALL CLUb
Chelsea Magazine - Issue 63,
November 2009

∼ 400M high Flickr

LAION (Schuhmann
et al., 2022)

I’m a Rugby Referee - Men’s Pre-
mium Hoodie

∼ 5B high Common
Crawl

WIT

Hugo van der Goes, Saint Luke
Drawing the virgin, c. 1470-80.
National Museum of Ancient
Art, Lisbon

∼ 5M low Wikipedia

Shutterstock
Happy rich kenelbulle mascot
design carries money bags ∼ 11M low Shutterstock

website

Table 4.1: Multimodal image and text datasets. Different datasets vary in the number of
samples, what is their source, and how clean their captions are

81



4 Pre-training and Generalization

4.2 The role of pre-training data in transfer
learning

In the preceding section, we discussed that large-scale multi-modal pre-
training methods such as CLIP have demonstrated impressive generalization
capabilities, especially in their ability to handle out-of-distribution data
(Figure 4.2). We noted that data plays the most important role in this
success (Fang et al., 2022). Additionally, we reviewed recent research on the
differences between various multimodal datasets and how these distinctions
can impact transfer learning performance.

Transfer learning has become a popular approach for transferring repre-
sentations learned by the pre-trained models to a new task and addressing
the challenges of limited labeled data in various domains. Upstream and
downstream refer to the different stages of the transfer learning pipeline.
The upstream stage involves pre-training a model on a large dataset. This
pre-trained model is then finetuned on a smaller dataset with labeled ex-
amples, referred to as the target or downstream dataset. Few-shot learning
aims to learn from a small amount of labeled data for the downstream task,
typically less than 20 samples per class. On the other hand, full-shot finetun-
ing involves finetuning a pre-trained model on a large amount of labeled
data to achieve high performance on a specific task. Zero-shot learning also
refers to the ability of a model to generalize to unseen classes without any
labeled examples.

In this section, we will extend our previous discussion on multimodal
pre-training by assessing the impact of data distribution in the context of
transfer learning. In contrast to prior works (Abnar et al., 2021; Bolya et al.,
2021; Deshpande et al., 2021; Hendricks & Nematzadeh, 2021; C. Nguyen
et al., 2020; You et al., 2021), our main focus is on the role of the pre-training
data distribution in downstream performance.

We conduct an extensive empirical investigation in the context of transfer
learning for computer vision tasks (see (Entezari et al., 2023) for details on
4000 experiments). Our study covers seven pre-training datasets including
YFCC (Thomee et al., 2016), LAION (Schuhmann et al., 2022), Redcaps
(Desai et al., 2021), Conceptual Captions-3m (Sharma et al., 2018), Concep-
tual Captions-12m (Changpinyo et al., 2021), WiT (Srinivasan et al., 2021),
Shutterstock, and ImageNet (Deng et al., 2009) nine finetuning datasets
including (CIFAR100 (Krizhevsky et al., 2009), DTD (Cimpoi et al., 2014),
Caltech-101 (Fei-Fei et al., 2004), PETS (Parkhi et al., 2012), REAL and CLI-
PART from DomainNet (Peng et al., 2019), EuroSAT (Helber et al., 2019),
Cassava Leaf Disease Classification (Divyanth L G, 2021), and Caltech Cam-
era Traps-20 (Beery et al., 2018)) and three pre-training methods: supervised,
CLIP (Radford et al., 2021) and SimCLR (T. Chen et al., 2020). To evaluate
downstream performance, we examine both few-shot finetuning and full
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finetuning.
In the following, we first review closely related works in Section 4.3,

followed by our experimental setup presented in Section 4.4. Section 4.5
details our observations related to our research questions by measuring
the downstream transfer accuracy of models pre-trained on various data
sources, dataset sizes, and with different pre-training losses.

4.3 Related works

Our study of the role of pre-training data is inspired by and closely related
to D. Kim et al. (2022) and Abnar et al. (2021). D. Kim et al. (2022) conducted
an in-depth study of the effect of network architecture, pre-training dataset,
supervised vs self-supervised learning objectives, and different domain
transfer methods on the transferability of representations to new domains.
They found that the transferability of the pre-trained representations de-
pends on factors such as the target benchmark, adaptation method, and
network depth. However, they do not study few-shot transfer, where we see
the most impact of the pre-training distribution. They also did not provide
a set of controlled experiments for some of the considered impacting factors
because they are limited to available pre-trained models. For example, when
comparing the role of data distribution (their Figure 2, ImageNet-21K (Deng
et al., 2009) vs. JFT-300m (Sun et al., 2017)), they change the dataset size
and also architecture, and the reader is left wondering if JFT has a better
distribution for the transfer or if the observed effects come from more data
or a better architecture.

Abnar et al. (2021) also explored how different upstream training set-
tings affect transfer accuracy for two upstream datasets and more than 20

downstream tasks. They showed that as the upstream accuracy increases,
the transfer learning performance on downstream datasets saturates. How-
ever, the authors study only upstream models that are pre-trained with a
supervised loss function on ImageNet-21K or JFT-300M (different size and
distributions). In this work, we extend these results to more pre-training
datasets and methods, with a special focus on data distribution and curation.
Abnar et al. (2021) also lack controlled comparison between different distri-
butions in the pre-training datasets e.g., they compare JFT and ImageNet
with different distribution and sample sizes. We consider full finetuning in
addition to few-shot transfer.

Deshpande et al. (2021), C. Nguyen et al. (2020), and You et al. (2021)
develop metrics for predicting transferability of a model. Their main focus
is to develop a measure to predict the full finetune accuracy without actu-
ally finetuning on a downstream task. While we also cover full finetuning
accuracy, our main research question lies in studying the extent to which
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pre-training data affect transfer accuracy. Looking at few-shot and full-shot
also gives us the ability to study the effect of transfer learning as more
target data become available. Moreover, predictability of the transfer perfor-
mance is mostly limited to supervised ImageNet-1K pretraining, while we
scale both pre-training distributions, size, and pre-training loss functions.
The transferability line of research mainly focuses on the Internet-crawled
datasets, while we extended our results to domain-specific datasets (Camera
Traps, Cassava Leaf Diseases, and EuroSAT),

4.4 Methodology

Model Our main focus is CLIP (Radford et al., 2021). This model has
demonstrated unprecedented robustness to natural distribution shifts (Miller
et al., 2021; Taori et al., 2020), and transfers well to many downstream
tasks (Radford et al., 2021; Wortsman et al., 2021). Given an image-text pair,
CLIP learns a joint embedding space for both images and their captions and
tries to maximize the cosine similarity between the text and image relative
to the cosine similarity of unaligned pairs. We use the CLIP implementation
from the OpenCLIP GitHub repository (Ilharco et al., 2021).

Pre-training We mainly use ResNet-50 (K. He et al., 2016) as the image
encoder unless stated otherwise. We vary the pre-training data distribution
in Section 4.5.1, curation method in Section 4.5.4, and pre-training dataset
size in Section 4.5.6 to obtain different pre-trained models. We also change
the contrastive loss function to SimCLR in Section 4.5.7 to test the effect
of the pre-training method on downstream transfer accuracy. (For further
training details refer to (Entezari et al., 2023)).

finetuning For most of the experiments we finetune the pre-trained model
end-to-end on a target transfer dataset unless stated otherwise. For each pre-
trained model and downstream transfer dataset, we used a large grid search
over various finetuning hyperparameters including learning rate, batch size,
and the number of epochs. We report the best-performing accuracy in the
plots. For further finetuning details refer to (Entezari et al., 2023).

Datasets Our large-scale experiments yield more than 4000 trained net-
works. Our pre-training datasets consist of the million-size image and
language pairs from multiple recent multi-modal datasets including YFCC
(Thomee et al., 2016), LAION (Schuhmann et al., 2022), RedCaps (Desai et al.,
2021), Shutterstock, Conceptual Captions (Changpinyo et al., 2021; Sharma
et al., 2018), WiT (Srinivasan et al., 2021). Our pre-training datasets are
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Figure 4.4: Differences between various pre-training sources diminish as more data is
available for the downstream tasks (Entezari et al., 2023). In the few-shot
setting, different pre-training datasets lead to noticeable differences in down-
stream performance. However, if many samples are available for finetuning, the
difference in absolute accuracy between models pre-trained on different sources
largely evaporates. See Figure 4.10 for a detailed view of this plot.

crawled from different sources covering different data distributions (See (En-
tezari et al., 2023) for details of pre-training sources and their samples). For
downstream tasks, we use nine different datasets CIFAR100, DTD, Caltech-
101, Oxford-PETS, REAL, and CLIPART from DomainNet, EuroSAT, Cassava
Leaf Disease, and Caltech Camera Traps (Beery et al., 2018; Cimpoi et al.,
2014; Divyanth L G, 2021; Fei-Fei et al., 2004; Helber et al., 2019; Krizhevsky
et al., 2009; Parkhi et al., 2012; Peng et al., 2019). While the first six datasets
are Internet-crawled datasets (similarly to the pre-training datasets) and
are more common in transfer learning in computer vision benchmarks, we
include three new downstream datasets that are domain-specific, i.e. the
dataset is created to solve a well-defined challenge in a specific domain.

4.5 Research questions

In the subsequent sections, we pose several research questions to examine
the significance of pre-training data, the selection of pre-training techniques
(supervised, CLIP, or SimCLR), and the effect of ImageNet distribution on
downstream performance. To address these questions, we carefully devise
experiments for each section, while ablating other impacting factors.
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4.5.1 What is the impact of different pre-training data
sources on transfer learning?

Do we expect different distributions to perform differently in the transfer set-
ting? Figure 4.4 aggregates transfer performance from different pre-training
datasets across all downstream datasets. To obtain each point, we (1) pre-
train CLIP models using a set of seven large data sources, (2) finetune each
pre-trained model on all downstream datasets using a different number
of shots (a sweep over multiple hyperparameters), and (3) for each down-
stream dataset, calculate the difference between the best and worst finetune
performance among used pre-training sources, normalized by the maximum
finetune performance. Figure 4.4 aggregates over all downstream datasets
for each number of shots, highlighting as an example different pre-training
models finetuned using 20 samples/class on all downstream datasets. We
observe that changing the pre-training dataset leads to noticeable differ-
ences in the downstream performance in a few-shot setting. However, as
more images are available for finetuning, the difference in absolute accuracy
between different pre-training models is largely diminished. Figure 4.10

shows this diminishing effect in detail for different downstream datasets.
The fully finetuned models have very similar downstream performance
despite different pre-training datasets (see the top-right point of CIFAR100

and REAL in Figure 4.10, and also the top-right point for CameraTraps,
Cassava Leaf, and EuroSAT in Figure 4.10). However, this is not true for
DTD, CALTECH101, PETS, and CLIPART, where they have far fewer images
per class for finetuning on the full dataset.

Table 4.2 compares finetune accuracy for different pre-training choices
along all downstream datasets. Transfer learning from even the worst pre-
training dataset outperforms training from scratch largely. The gap between
best and worst-performing pre-training datasets is small. For results on the
Vision Transformers (Dosovitskiy et al., 2021) instead of ResNet-50 refer to
(Entezari et al., 2023).

4.5.2 Which data distribution is better for transfer
learning?

The detailed results in Figure 4.10 demonstrate that pre-training on the Shut-
terstock and LAION datasets results in superior transfer performance across
a range of downstream tasks. A closer look shows a superior performance
of Redcaps for PETS. We investigate this further and inspect many pets by
looking at random samples from Redcaps (see (Entezari et al., 2023) for
these samples). We also look into the most common words in the captions of
these pre-training datasets, summarized in Table 4.3. We observe that "cats"
and "dogs" are among the most common words in the Redcaps dataset.

86



4 Pre-training and Generalization

C
IF

A
R

1
0

0

D
T

D

C
A

LT
EC

H

PE
T

S

D
om

ai
nN

et
R

EA
L

D
om

ai
nN

et
C

LI
PA

R
T

Eu
ro

SA
T

C
as

sa
va

Le
af

D
is

ea
se

C
am

er
a

Tr
ap

s

av
er

ag
e

Train from scratch
(no pre-training) 72.82 44.62 55.32 67.96 77.76 55.20 58.50 70.30 89.10 65.73

Worst performing
pre-training 81.62 61.06 82.38 83.15 81.87 68.98 70.72 87.05 98.85 79.52

Best performing
pre-training 83.71 68.56 86.88 87.84 82.92 72.38 72.79 87.57 98.91 82.39

Table 4.2: Full finetune accuracy from six different pre-training datasets across all down-
stream datasets (Entezari et al., 2023). Transfer learning from even the worst
pre-training dataset outperforms training from scratch largely.

Table 4.3 also shows that "background", "design", "pattern", and "texture" are
among the most common words in the captions of Shutterstock, supporting
a high correlation between DTD (Describable Textures Dataset) and Shut-
terstock. These observations support the intuition between the closeness of
the pre-training data and the target tasks, both in visual and caption (label)
domains.

4.5.3 How much pre-training contributes to downstream
performance as opposed to training from scratch?

While transfer learning from a large pre-training dataset outperforms train-
ing from scratch for all downstream tasks, the magnitude of the improve-
ment varies for different datasets in Figure 4.10. We observe a large im-
provement for PETS, CALTECH-101, and CLIPART. PETS, for example, has
a small number of samples per class for training (30), which makes it hard
to train from scratch. PETS is also scraped from the web (Fei-Fei et al., 2004)
i.e., Google image search, similar to our web-scraped pre-training sources.
Therefore, we hypothesize that the benefits of pre-training over training
from scratch become more apparent when the pre-training and target tasks
are closely related, both in terms of semantic content and sample similarity.

4.5.4 Do well-curated pre-training datasets lead to better
transfer?

There has been a significant effort to create computer vision datasets with
high-quality labels. On the other hand, many recent datasets are large
but noisy e.g., LAION. This challenge is especially pronounced in domain-
specific machine learning applications where obtaining accurate labels can
be a difficult and resource-intensive process. Expert opinions are often
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Figure 4.5: Effect of data curation and labeling (Entezari et al., 2023). We compare super-
vised pre-training on ImageNet-1K to (1) contrastive pre-training on original
captions from Flickr with 0.5m samples, and (2) contrastive pre-training on tem-
plated (clean) captions using ImageNet labels with 1.2m samples. Supervised
pre-training on ImageNet leads to a better transfer accuracy than contrastive
pre-training. Improving captions quality from Flickr to Template leads to huge
improvements in downstream transfer accuracy, highlighting the importance
of caption quality. On a different comparison between ImageNet and LAION
distributions, pre-training CLIP on Flickr captions outperforms pre-training on
LAION distribution with the same size (0.5m). For more results on other target
datasets see (Entezari et al., 2023).

relied upon to generate these labels, but even these can introduce noise
and inconsistencies due to human biases and errors. As machine learning
models are increasingly deployed on edge devices, the need for high-quality
training data becomes even more crucial (Cao et al., 2020). Edge devices,
with their inherent limitations in computational power and storage, require
models that are both efficient and robust to noise in order to deliver accurate
and reliable performance. This underscores the importance of addressing
the issue of noisy labels, particularly in domain-specific tasks and their
implementation on edge devices. In this section, we are going to investigate:

How much is laborious ImageNet labeling worth?

To answer this question, we first start by pre-training ResNet-50 ImageNet-
1K (ILSVRC 2012), using supervised cross-entropy loss and finetune on our
downstream datasets in Figure 4.5. To investigate the role of supervision,
we then discard ImageNet labels and use CLIP to pre-train on ImageNet.
Because the ImageNet dataset has no captions, we include original Flickr
captions, which reduces the size of the image and captions to 0.5M samples,
see (Entezari et al., 2023; Fang et al., 2022) describing the required steps to
create ImageNet-Flickr. Figure 4.5 shows that supervised pre-training on
ImageNet outperforms CLIP pre-training on ImageNet with Flickr captions
by a large margin in all downstream tasks.

However, such a gap could be attributed to two differences between
mentioned pre-trainings: (1) supervised vs. contrastive image-language loss,

88



4 Pre-training and Generalization

1 5 10 20 full
0

20

40

60

80

100 CIFAR100
F

in
et

un
e 

ac
cu

ra
cy

 [%
]

1 5 10 20 full
0

20

40

60

80

100 DTD

1 5 10 20 full
0

20

40

60

80

100

Pre-train Datasets:
LAION_15m

LAION_2B

IN1K_Template_Captions

Supervised_IN1K

CALTECH101

Figure 4.6: How much LAION data is worth of ImageNet pre-training? (Entezari et
al., 2023) While Figure 4.5 shows the superiority of supervised pre-training
over contrastive pre-training with the same size, here we increase the size of
contrastive pre-training size to see if contrastive pre-training could perform
better than supervised pre-training at scale. Including 15x more data from
LAION outperform supervised ImageNet pre-training (and template captions)
on CIFAR100. However, DTD needs 2000x more data from LAION to match
or outperform ImageNet pre-training. Even including 2000x more data did not
help CALTECH-101, where supervised ImageNet pre-training is still the best
choice. For extended results on other target datasets see (Entezari et al., 2023).

and (2) the size of training samples for supervised-ImageNet (1.2m) is two
times larger than CLIP with ImageNet-Flickr captions (0.5m). To remove
the second effect we then use all the images from ImageNet, paired with
templated clean captions, e.g., “a photo of a class name”. This allows us
to have a fair comparison between supervised and CLIP pre-training on
ImageNet, given the same size. Figure 4.5 shows that pre-training with
clean captions improves the performance of CLIP pre-training by a large
margin and outperforms supervised pre-training on CIFAR100. However,
supervised pre-training on ImageNet still performs best for the rest of the
datasets.

4.5.5 How does the effectiveness of ImageNet pre-training
compare to that of LAION pre-training?

Figure 4.5 shows that pre-training CLIP on ImageNet (with template cap-
tions) outperforms LAION with the same size (1m) by a large margin.
However, this gap shrinks as more data for the downstream task are avail-
able. Interestingly, pre-training CLIP on LAION-1m is only as good as
ImageNet with Flickr captions with half of the data (0.5m).

What if we scale LAION pre-training size? Figure 4.6 shows that includ-
ing 15× more data from LAION outperforms ImageNet pre-training with
template captions only on CIFAR100 transfer. DTD, REAL, and CLIPART
need 2000× more data from LAION to match or outperform ImageNet
pre-training. However, even including 2000× more data did not help CAL-
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Figure 4.7: Effect of the pre-training dataset size (Entezari et al., 2023). Increasing the
size of the dataset used for pre-training results in better transfer accuracy on
downstream tasks. However, the absolute accuracy difference is smaller in the
high-shot regime, even when pre-training consists of 100× more data. The
benefit of pre-training on LAION-2B is different on target tasks. While there is a
major gap between LAION-2B and LAION-15m for CIFAR100, the performance
gain from scaling up the pre-training dataset on CALTECH101 gets saturated.
For extended results on other target datasets see (Entezari et al., 2023).

TECH101. ImageNet pre-training also outperforms LAION-2B on PETS by a
large margin. Our hypothesis is that the overlapping samples of pets, such
as different dog breeds, in both PETS and ImageNet datasets contribute to
this similarity.

4.5.6 How does the downstream performance improve as
more data is available for pre-training?

Should we expect that more pre-training data implies a better performance?
Does the pre-training effectiveness saturate at some point? We fix the pre-
training distribution to YFCC and LAION and compare pre-training on
2.7m samples with 15m samples. We also extend our experiments to see the
effect of extreme sample sizes and include ViT-B/32 CLIP model trained on
2b samples from LAION. Figure 4.7 shows that increasing the size of the
dataset used for pre-training results in higher downstream transfer accuracy.
However, the magnitude of the improvement varies across different down-
stream datasets. While increasing the pre-training size of YFCC and LAION
improves the CIFAR100 performance by a large margin, this improvement is
modest for the rest of the downstream datasets. Specifically including 2 bil-
lion samples from LAION does not help CALTECH101 and PETS. Similarly
to the findings in Figure 4.4, in larger sizes, we observe more noticeable
differences in downstream performance in the few-shot regime. The differ-
ence in the absolute accuracy when more data is available for finetuning is
usually smaller. However, in contrast to the findings by Abnar et al. (2021),
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Figure 4.8: Effect of the pre-training data distribution when using SimCLR as the pre-
training method (Entezari et al., 2023). Using different datasets for pre-training
leads to a noticeable difference in downstream transfer accuracy. Similarly to the
previous results for CLIP pre-training, the absolute difference in downstream
transfer accuracy between different pre-training datasets is smaller when many
images are available for finetuning. For more results on other datasets see
(Entezari et al., 2023).

pre-training on the extremely large LAION-2B still manages to boost the
downstream performance in the full finetuning mode. Figure 4.7 shows that
LAION pre-training outperforms YFCC pre-training on downstream tasks
for both 2.7m and 15m subsets of the datasets. Interestingly, pre-training
on LAION-2.7m performs similarly to a much larger in size of YFCC-15m
pre-training, highlighting the efficiency of the LAION distributions. Using
an extremely large dataset of LAION-2B improves the performance by a
significant margin in the few-shot regime for CIFAR100. While differences
in absolute accuracy are smaller as more data is available for finetuning,
LAION-2B pre-training still performs consistently better.

4.5.7 Effect of pre-training loss

In this section, we replace the pre-training loss from language-image con-
trastive in CLIP with image-only contrastive loss in SimCLR (T. Chen et al.,
2020). Figure 4.8 highlights that our observations from Figure 4.4 are now
extended to image-only pre-training, i.e., changing the pre-train dataset
leads to differences only in the few-shot downstream performance. Next,
we evaluate the distinction between pre-training using CLIP and SimCLR.
The results are presented in Figure 4.9. Overall we find that the models
pre-trained with SimCLR have better downstream transfer accuracy than
the models pre-trained with CLIP in the few-shot regime.

Similarly to our observations regarding the effect of the pre-training data
distribution (Figures 4.4, 4.5, and 4.8), the absolute accuracy difference is
smaller when more data is used for finetuning. We note that this is different
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Figure 4.9: Pre-training with CLIP vs. SimCLR (Entezari et al., 2023). Overall we observe
that SimCLR pre-training results in a better downstream transfer accuracy
than using CLIP pre-training on the same dataset. These differences are more
pronounced in the few-shot setting.

from what (Santurkar et al., 2022) observed. However, we suspect this
difference is because we are finetuning all model parameters while they
only consider a linear classifier.

The difference in the downstream transfer accuracy for CLIP and Sim-
CLR pre-training varies across different datasets. While SimCLR is only
marginally better than CLIP for CIFAR100, the difference is significantly
larger for DTD and CALTECH101, especially in the few-shot setting.
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Figure 4.10: Effect of the pre-training data distribution (Entezari et al., 2023). While Fig-
ure 4.4 shows the aggregated results all downstream datasets, here we include
the performance for each pair of (pretraining, downstream) datasets in detail.
We provide a detailed analysis of the performance for each specific combination
of pretraining and downstream datasets (as opposed to Figure 4.4 presenting
the aggregated results for all downstream datasets). In the low-shot setting,
different pre-training datasets lead to noticeable differences in downstream
performance. If many samples are available for finetuning, the difference in
absolute accuracy between the models pre-trained on different sources largely
evaporates.
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Table 4.3: Most common words in captions of pre-training distributions (Entezari et al.,
2023).

Pre-training dataset Top 20 words in 1M sample of captions

Shutterstock background, vector, illustration, design, icon, pattern, tex-
ture, style, woman, concept, hand, color, flower, view, tem-
plate, line, business, logo, card, symbol

Redcaps day, today, year, time, cat, plant, friend, anyone, picture,
baby, guy, week, dog, home, morning, night, month, way,
boy, work

YFCC-15m photo, day, park, street, city, picture, view, time, world, year,
house, state, center, part, garden, shot, image, building,
road, museum

LAION-15m photo, stock, image, black, woman, design, set, vector, white,
print, home, men, blue, dress, art, card, sale, gold, bag, cover

CC-12m illustration, stock, art, design, photo, image, background,
room, vector, house, home, woman, wedding, style, photog-
raphy, royalty, car, fashion, girl, world

CC-3m background, actor, artist, player, illustration, view, woman,
man, football, team, tree, premiere, city, vector, day, girl,
beach, game, hand, people

WIT view, church, station, map, house, building, hall, museum,
city, location, street, park, river, state, john, county, town,
center, bridge, world

4.6 Conclusion

In this chapter, we have emphasized the critical role of data in training
and generalizing neural networks, specifically focusing on the impact of
pre-training data distribution on transfer performance. We explored the
root cause behind out-of-distribution performance drops and discussed
advances targeting improvement in generalization under such circumstances.
Moreover, we examined the transfer learning paradigm and highlighted its
growing significance as more pre-trained models become accessible.

Our findings indicate that variations in pre-training distributions and
methods can result in differences in downstream transfer accuracy, partic-
ularly in the few-shot transfer regime. However, these disparities tend to
decrease when a larger number of images are utilized for finetuning. We
also discovered that the pre-training method influences performance on
downstream transfer, and incorporating more pre-training data may help
bridge the performance gap between training methods, such as supervised
and contrastive approaches.

Nonetheless, our study has its limitations. Considering the resource con-
straints on edge devices, one could explore lightweight finetuning methods,
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like linear probing, instead of full finetuning. Furthermore, while we per-
formed an exhaustive hyperparameter sweep for finetuning, we did not do
the same for pre-training, primarily due to the cost disparity between the
two processes.

Our findings offer valuable insights into transfer learning and provide a
foundation for future research. By exploring the influence of different pre-
training methods and data distributions on downstream transfer accuracy,
we encourage further investigation into optimal pre-training techniques and
the interplay between data size and model performance. Our work also
highlights current limitations, opening up opportunities for future research
to develop lightweight finetuning methods and optimize the pre-training
process. Given our results on the disparities between datasets in transfer
performance, one promising future direction is the development of improved
pre-training datasets. By carefully curating and refining these datasets,
researchers can potentially enhance the effectiveness of pre-training methods
and consequently improve the transfer learning process. This advancement
would contribute to the overall performance of neural networks, particularly
in edge environments, where limited labeled data is available.
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The recent development of deep neural networks promised to bring machine
intelligence to our daily life. However, the resource demands of neural
networks limit their scalability, accessibility, and deployment on edge devices
like mobile phones or embedded systems. Furthermore, Edge devices are
often deployed in diverse environments with different conditions, such
as varying temperatures. Therefore data collected by edge devices can
be shifted over time. In addition, this data is often noisy, incomplete, or
corrupted due to factors like sensor inaccuracies, communication errors, or
environmental influences. These reasons motivate the implementation of
machine learning models that can handle different variations and generalize
well to unseen data and conditions.

In this dissertation, we have explored the generalization of neural net-
works, investigating the challenges and limitations these models face when
deployed on edge devices. This concluding chapter summarizes the key
findings from each chapter and discusses how our research advances the
understanding of neural networks at the edge while offering potential future
research directions.

In Chapter 2, we investigated the interplay between sparsity and robust-
ness in neural networks, particularly for edge devices operating in dynamic
environments. We discovered that sparsity can improve network robustness
without negatively impacting overall accuracy. Our findings also revealed
that models trained with a contrastive objective are more sensitive to the
introduction of sparsity relative to traditional supervised training with a
cross-entropy loss. Moreover, we tackled data and class imbalance chal-
lenges by proposing an end-to-end sparsity method that incorporates a
parameterized loss function, showcasing its effectiveness in real-world edge
applications. Our sparsity-driven approach demonstrates significant promise
for edge devices operating in diverse environments with varying conditions.
We also highlighted the importance of domain expertise in medical imaging
applications and demonstrated the potential of sparse neural networks in
this area. By applying sparsity techniques to nuclei instance segmentation
in medical images, we observed that sparse models maintain high accuracy
and robustness against distribution shifts, which is critical in real-world
edge applications. Our sparsity-driven approach demonstrates significant
promise for edge devices operating in diverse environments with varying
conditions.
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In Chapter 3, we delved into the loss landscape of neural networks and its
implications on model generalization. We explored the geometric structure
of the loss landscape, the role of overparameterization on the loss landscape
shape, and the invariances of neural networks. We conjectured that by ac-
counting for permutation invariance, barriers between different solutions in
the loss landscape can be eliminated, with all solutions residing in the same
basin. We provided theoretical and empirical support for our conjecture and
proposed the REPAIR method, which improves the performance of aligned
interpolated networks. Our exploration of the loss landscape contributes
to improving generalization and designing more efficient algorithms for
initialization, ensembling, and distributed training.

In Chapter 4, we emphasized the critical role of data in training and
generalizing neural networks, specifically focusing on the impact of pre-
training data distribution on transfer performance. Our findings indicate that
variations in pre-training distributions and methods can result in differences
in downstream transfer accuracy, particularly in the few-shot transfer regime.
We also discovered that the pre-training method influences performance on
downstream transfer, and incorporating more pre-training data may help
bridge the performance gap between training methods, such as supervised
and contrastive approaches.

This thesis advances the understanding of neural networks at the edge
by examining sparsity, loss landscape, and the role of data in training
and generalization. The insights provided in this research can be used to
guide future work on neural network optimization and deployment in edge
environments. Some examples may include but are not limited to:

1. Developing pruning methods that address fairness concerns with
respect to underrepresented groups.

2. Investigating training dynamics to improve model adaptation under
resource constraints, e.g., effectively training sparse networks from
scratch.

3. Extending our findings on sparsity and loss landscape to understand
why Lottery Ticket Hypothesis works and propose methods to find
sparse sub-networks without expensive iterative training and pruning
procedure.

4. Investigating the impact of REPAIR in practice e.g., improving test
accuracy by learning ensembles or improving federated learning tech-
niques.

5. Investigating the role of language in contrastive pre-training e.g., qual-
ity of captions in zero-shot and finetune performance.

6. Extending our results on the quality of the pre-training datasets by
designing new filtering techniques or curating new data sources e.g.,
DataComp (Gadre et al., 2023).
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