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Abstract

This paper examines the impact of static sparsity
on the robustness of a trained network to weight
perturbations, data corruption, and adversarial
examples. We show that, up to a certain spar-
sity achieved by increasing network width and
depth while keeping the network capacity fixed,
sparsified networks consistently match and often
outperform their initially dense versions. Robust-
ness and accuracy decline simultaneously for very
high sparsity due to loose connectivity between
network layers. Our findings show that a rapid
robustness drop caused by network compression
observed in the literature is due to a reduced net-
work capacity rather than sparsity.

1. Introduction

Deep learning methods are increasingly used for solving
complex tasks, yet little is known about the choice of the
best architecture, the required model size, capacity, and the
trade-offs involved. A common strategy is to train overpa-
rameterized models and compress them into smaller repre-
sentations (Hoefler et al., 2021). This works remarkably
well with an almost negligible drop in accuracy (Gale et al.,
2019; Blalock et al., 2020), and is crucial to make use of
these models in resource-constrained environments. Recent
works, however, shows that test accuracy does not capture
how model compression impacts the generalization proper-
ties of these models (Hooker et al., 2020).

Related literature refers to robustness as the network gen-
eralization ability to small shifts in the distribution that
humans are usually robust to. There is a growing body of
work studying methods for building robust models. Recent
studies (Shankar et al., 2020; Recht et al., 2019) found that
image classification models show a consistent accuracy drop
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when evaluated on ImageNet (Deng et al., 2009) and Im-
ageNetV2 (Recht et al., 2019), while humans achieve the
same accuracy. Another line of research aims at minimiz-
ing the worst case expected error over a set of probability
distributions by applying distributionally robust optimiza-
tion (Shafieezadeh-Abadeh et al., 2015; Duchi et al., 2020;
Sagawa et al., 2020). A similar line of work focuses on find-
ing models that have low performance drop on adversarial
examples (Biggio & Roli, 2018; Madry et al., 2019).

A recent study by Hooker et al. (2020) shows that model
compression, and to a smaller extent quantization, result in
tremendous robustness degradation. At the same time, Gol-
ubeva et al. (2021) found that wider networks of the same
capacity (same number of parameters) yield better perfor-
mance. Model compression leads simultaneously to sparser
and lower capacity networks, yet the contribution of both
effects is mixed. Understanding the impact of these effects
on model robustness in isolation is crucial when optimizing
machine learning models for resource-constrained devices.
This work evaluates the effect of model sparsification while
keeping the network capacity, defined by the total number
of parameters, fixed.

Contributions. We hypothesise that sparsity alone does not
hurt model robustness when the network capacity is fixed
and provide empirical evidence to support this hypothesis
in a number of settings. We run our study on a range of
network architectures (MLPs, VGG and ResNets), datasets
(MNIST, CIFAR-10, CIFAR-100), robustness tests (weight
perturbations, data corruptions, adversarial examples) and
evaluate the overall and per class network performance. We
observe that for randomly initialized models with a static
sparsity pattern applied before or after training, network
sparsification does not hurt or even improves robustness to
a certain sparsity compared to a dense network of the same
capacity. Robustness and accuracy decline simultaneously
for very high sparsity due to loose connectivity between
network layers. We show that our hypothesis holds when
introducing sparsity by increasing network width and depth
in separate experiments, applied before and after training.
These findings show that a rapid robustness drop caused by
network compression observed in the literature is due to a
reduced network capacity rather than sparsity.
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Figure 1. Robustness to weight perturbations, sparsification by increasing width. We add multiplicative Gaussian noise z; ~
N (u, w?o?) to each weight and evaluate model performance. We observe that as we move towards higher sparsity levels, the performance
first increases then decreases in extreme sparsity levels. We note that such increase is happening earlier for simpler tasks like MNIST.
This performance improvement indicates a flatter loss landscape around the minima suggesting better generalization.
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Figure 2. Robustness to data corruption, sparsification by increasing width. We evaluate the performance of the models on corrupted
datasets MNIST-C, CIFAR10-C and CIFAR100-C. We observe that as we move towards higher sparsity levels, the performance first
increases then decreases in extreme sparsity levels. We note that such increase is happening earlier for simpler tasks like MNIST.

2. Experimental Framework

We hypothesise that sparsity, while keeping the number
of parameters fixed, does not hurt network robustness. We
support our hypothesis by exhaustive tests covering multiple
datasets, network architectures, model and data corruptions,
sparsity levels, sparsification methods and schedules. The
details are given below.

Datasets and architectures. The datasets used in the ex-
periments include MINST (LeCun & Cortes, 2010), CIFAR-
10 (Krizhevsky et al., 2009), and CIFAR-100) (Krizhevsky
et al., 2009). We fix the number of weights in each net-
work architecture (one layer MLP, VGG16 (Simonyan &
Zisserman, 2015), ResNet18 (He et al., 2015)) throughout
all experiments, by increasing the width or depth and intro-
ducing the proper corresponding sparsity. See sparsification
methods for more details. We use one layer MLP with 27
hidden units, VGG with 11 layers, and ResNet18 as base
architectures. We refer to these vanilla architectures as to
100 %-networks before sparsification. Note that for both
ResNet and VGG our vanilla implementation uses the layer
width of 16 as the base architecture, which is lower than

64 used in the original architecture. We use width to set
the number of output channels for the first layer and use
the same width ratios as the respective vanilla architectures
for the following layers. All networks were trained using
SGD with momentum 0.9. Details for each model family
are provided in Section A.

Sparsification methods. Existing literature covers multi-
ple ways to make use of sparsity during and after model
training including static and dynamic sparsity (e.g., (-
Lasso (Neyshabur, 2020)), iterative hard thresholding (e.g.,
Lottery Ticket Hypothesis with various pruning strate-
gies (Frankle & Carbin, 2018; Renda et al., 2020)) and oth-
ers. (Hoefler et al., 2021) provides a comprehensive survey
on pruning strategies. Sparsification without changing the
number of parameters was investigated in (Golubeva et al.,
2021). In their study static sparsity showed the most promi-
nent impact on network performance and is thus adopted in
this work.

We sparsify a network while preserving its capacity by
changing the network’s width or depth. When sparsifying
by increasing width, we leverage the approach introduced
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Figure 3. Robustness to adversarial attacks. Sparsification by increasing width. Robustness to all adversarial attacks (BIM (Kurakin
et al., 2016), APGD (Croce & Hein, 2020), PGD (Madry et al., 2019), FFGSM (Goodfellow et al., 2014)) is improved as we have less
remaining weights and decreases for extreme sparsity levels where overall network accuracy (clean) drops.
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Figure 4. Robustness to weight perturbations. Sparsification
after training by increasing width. We add multiplicative Gaus-
sian noise z; ~ N (i, w?o?) to each weight and evaluate perfor-
mance on test data. As we move towards higher sparsity levels,
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Figure 5. Robustness to data corruption. Sparsification after
training by increasing width. We evaluate on the corrupted
datasets MNIST-C, CIFAR10-C and CIFAR100-C. sompare to
static sparsity at the prior to training, robustness degrades sooner.

in (Golubeva et al., 2021): every layer of the network is
sparsified by removing weights at random in proportion to
the layer size, using a static mask generated at initialization.
This approach is referred to as static sparsity. We build
on its publicly available implementation (Golubeva et al.,
2021). Sparsifying by increasing network depth involves
duplicating layers and then applying a static random mask
to sparsify the weight tensors. When sparsifying by increas-
ing depth, we consider MLP with 2° hidden units in each
layer, and add layers of the same size. For VGG and ResNet

we build architecture families VGG11, VGG13, VGG16
and ResNet18, ResNet34, ResNet50 all enjoying the default
width of 64.

Sparsification schedules. In addition to static sparsity ap-
plied prior to network training, we also investigate network
pruning after training by removing a certain amount of
weights with the lowest magnitude to match the required
sparsity level. Note that no fine-tuning is applied.

Robustness measures. We evaluate the impact of
sparsity on model performance with respect to weight
perturbations (von Oswald et al., 2021), data corrup-
tions (Hendrycks & Dietterich, 2019) and natural adversarial
examples (Hendrycks et al., 2021).

Model perturbation. Similarly to (von Oswald et al., 2021),
we perturb model weights by applying Gaussian noise
z; ~ N (i, w?o?) in proportion to the magnitude of each
weight w;, ¢ € L, and then measure the difference in the loss
0L = E,[L(w; + z) — L(w;)]. Accuracy drop due to model
perturbation is related to the flatness of the loss landscape
around the obtained optimum. Robustness to weight pertur-
bation could also represents a proxy for quantization error.
This error is introduced in neural network compression by
weight quantization in the literature (Novac et al., 2021).

Corrupted data. We apply numerous algorithmically gener-
ated corruptions, similar to the ones evaluated in (Hooker
et al., 2020) (e.g., blur, contrast, pixelation) to all datasets
used in this paper. This allows us investigating how sensi-
tive the sparsified models are to data corruptions of different
severity which humans are oblivious to. Our corrupted
datasets are MNIST-C (Mu & Gilmer, 2019), CIFAR10-C
and CIFAR100-C (Hendrycks & Dietterich, 2019).

Natural adversarial examples. We use Torchattacks (Kim,
2020) to generate a diverse range of adversarial attacks
for different combination of mentioned architectures and
datasets. This include FGSM (Goodfellow et al., 2014),
BIM (Kurakin et al., 2016), APGD (Croce & Hein, 2020),
and PGD (Madry et al., 2019).
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When applying sparsity, we evaluate both the overall model
performance and its performance on the most sensitive class.
We follow the methodology introduced in (Hooker et al.,
2020) and evaluate the change to class level recall compared
to the overall model accuracy. The obtained results are
presented below.

3. Results

Perturbed model weights. We first investigate the net-
works that were sparsified while growing the width to keep
their capacity fixed. Figure 1 shows that as we move towards
higher sparsity levels, the test performance first increases
then decreases in extreme sparsity levels. We note that such
increase is happening earlier for simpler tasks like MNIST.
We observe that sparse configurations are indeed in flatter re-
gions of weight space as 0 £ increases more slowly with dz;.
This suggests better robustness and generalization around
the minima (Pittorino et al., 2020; Jiang et al., 2019). Each
point in this plot shows the mean over five networks trained
from different initializations. When sparsification is applied
while increasing network depth, the maximum accuracy and
robustness are achieved for smaller depth values in all ex-
periments. Note that keeping a network connected while
increasing its depth, in contrast to width, becomes difficult
with higher sparsity. The results are summarized in Sec-
tion B.1. The outcome across all experiments consistently
suggests that sparsification alone does not undermine net-
work robustness to weight perturbations as long as sufficient
network connectivity is maintained.

Corrupted data. Figure 2 evaluates the performance of
the models on corrupted datasets MNIST-C, CIFAR10-C
and CIFAR100-C. We observe that as we move towards
higher sparsity levels, the test performance first increases
then decreases in extreme sparsity levels. We note that
such increase is happening earlier for simpler tasks like
MNIST. Each point in Figure 2is mean performance over
three trained networks. For each network we randomly
sample 1000 examples from a dataset and add five noise
samples in each run. On CIFAR10-C and CIFAR100-C
our evaluation considers corruption severity of two and
four as classified by (Hendrycks & Dietterich, 2019). De-
tailed results for specific corruption types can be found in
Section B.2. The results for the achieved performance of
networks sparsified by increasing depth are also shown in
Section B.1. We note that VGG networks experience conver-
gence issues as the network sparsity approaches 10% due to
lacking connectivity between layers. This is not the case for
MLP and ResNet which also converge for lower percentage
of remaining weights. We attribute these differences to the
power of skip connections in ResNet and low overall tested
network depths (1,2,4 and 8) for MLP.

Sensitive classes. Similarly to (Hooker et al., 2020), sen-

sitive classes are considered those with the lowest recall.
For each sparsity level, we train five models, evaluate them
on the test data and report the minimum recall among all
classes. (Hooker et al., 2020) shows that there are some
particular examples in each class that a pruned network for-
gets easily. However, we observe that as the networks get
wider (or deeper) and sparser the minimum recall does not
decrease. Sparsification does not disproportionally affect
sensitive classes, which may not be noticeable by just look-
ing at the overall accuracy. This is due to the fact that the
capacity of the networks is fixed. The results are shown in
Figure 8 in Section B.1.

Adversarial attacks. Figure 3 shows the robustness of
sparsified networks when applying adversarial attacks to
perturb test data. We observe a consistent trend for robust-
ness to all adversarial attacks (BIM (Kurakin et al., 2016),
APGD (Croce & Hein, 2020), PGD (Madry et al., 2019),
FGSM (Goodfellow et al., 2014)). Similar to perturbed
model weights and corrupted data, as we have less remain-
ing weights, test performance for adversarial examples is
first improved and then decreases for extreme sparsity levels
where the overall (clean) network accuracy drops. Dense
VGG networks trained on MNIST show the highest accuracy
decline in the presence of all attacks, while sparsification
helps to improve adversarial robustness.

Post-training sparsification. Figure 4 depicts the results
for post-training sparsification for MLP and VGG architec-
tures challenged with perturbed model weights. The results
indicate a similar trend to the experiments with static spar-
sity applied at initialization. For VGG we observe a slight
improvement followed by an accuracy drop. However, the
performance does deteriorate sooner than with static spar-
sity. For MLP the results show stagnating accuracy and a
slight drop in performance on CIFAR-10. We attribute this
to the simplicity of our sparsification method and a relatively
low number of weights in the one layer MLP. Similar results
are obtained on corrupted datasets visualized in Figure 5.

4. Conclusion

In this work we hypothesise that sparsity, while keeping
the number of parameters fixed, does not hurt network ro-
bustness. We provide experimental evidence to support
this claim based on several standard architectures, datasets,
sparsification methods and measures of robustness. Our
observation is that network sparsification often helps to im-
prove robustness compared to a dense model, yet the benefits
decline together with the overall model accuracy for high
sparsity levels. This is due to the increasingly loose connec-
tivity between layers which complicates optimization. Since
network capacity rather than sparsity causes accuracy and
robustness drop of compressed models, designing pruning
methods that treat network capacity and sparsity separately
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can lead to better compressed models. In addition, our work
emphasizes the need for training procedures that better sup-
port sparse operations, which would allow for a faster and
more memory efficient training of sparse networks.
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A. Implementation Details

We used Caliban (Ritchie et al., 2020) to manage all experi-
ments in a reproducible environment in Google Cloud’s Al
Platform. Each point in plots show the mean value taken
over at least five different runs.

A.1. Training for MLP

¢ Dataset: MNIST (LeCun & Cortes, 2010),
CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-
100 (Krizhevsky et al., 2009)

e Network: MLP

* Width experiments: single hidden layer, hidden neu-
rons 2" where n € 7..15.

« Depth experiments: 2° neurons per layer, we add addi-
tional layers with the same number of neurons.

* Hyper parameters:

— LR =fixed 0.01
— stopping criteria = 300 epochs or loss (CE) < 0.01
— Momentum = 0.9

A.2. Training for CNN architecture family

¢ Dataset: MNIST (LeCun & Cortes, 2010),
CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-
100 (Krizhevsky et al., 2009)

e Network: VGG (Simonyan & Zisserman, 2015),
ResNet (He et al., 2015))

* Width experiments: we use VGGI11 and ResNetl18
changing the width of the first layer and adapting the
following layers according to the ratios in the vanilla
version of the networks.

e Depth experiments: we change the architecture:
VGG11, VGG13, VGG16 and ResNet18, ResNet34,
ResNet50 while keeping the default width of the vanilla
networks.

* Hyper parameters:

— LR = Cosine Annealing (Loshchilov & Hutter,
2016) with initial LR=0.01

— stopping criteria = 300 epochs or loss < 0.1
— Momentum = 0.9

B. Additional Plots

B.1. Sparsification by increasing network depth

In addition to increasing network width before applying
random static sparsification, we also test sparsification by

increasing network depth. In this case, we duplicate layers
while keeping their width unchanged. In contrast to wider
networks, high sparsity levels severely impairs connectivity
between layers of deeper networks which make these more
difficult to train and converge. VGG experience conver-
gence issues when sparsifying by increasing depth when
sparsity approaches 10 %. ResNet appears less susceptible
to this issue due to the presence of skip connections, whereas
MLPs are more robust due to a considerably lower depth
in our settings (1,2,4 and 8). Our experiments with deeper
MLP networks and high sparsity also reveal convergence
issues similarly to VGG. We run experiments for increasing
depth for all architectures and datasets up to a point where
the overall network accuracy starts to drop and as long as
network training converges.

Figure 6 and Figure 7 show the results for weight pertur-
bations and corrupted data of varying severity. The results
are similar and show that robustness improves as long as
network accuracy without intervention remains steady.

Figure 8 shows the results for the lowest recall among all
classes. Network accuracy on the most sensitive classes
does not decline with sparsity. The test is conducted without
weight perturbation or data corruption.

B.2. Detailed results for corrupted data

The plots presented in Figure 9, Figure 10 and Figure 11
provide details on the impact of individual corruption meth-
ods on network performance. We show details for MLP,
VGG and ResNet architectures trained on MNIST, CIFAR-
10 and CIFAR-100. Sparsification is achieved by increasing
network width. Although the effect of data corruptions
on model performance varies widely, it can be observed
that in all cases a sparser network matches the accuracy of
the vanilla 100 % network. This observation holds up to
high sparsity levels where the overall model performance
declines.
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Figure 6. Robustness to weight perturbations. Sparsification by increasing network depth We add multiplicative Gaussian noisez; ~
N (u, w?o?) to each weight and evaluate model performance. There is a sweetspot corresponding to optimal sparsity. With higher depth
and sparsity network connectivity declines leading to simultaneous accuracy and robustness drop.

100 Py 100 e o-o
90 90
S— —— dataset
< 80 dataset — 80 ‘ —— MNIST
X = ——X
= —— MNIST = === \ CIFAR10
Z b T X e s & 2z 70 x-= — — &~
8 70 - CIFAR10 & = - x —— CIFAR100
§ severity § 60 o severity
< & 0.0 < —— 00
50
1.0 -#- 1.0
50 - 20 0 ol 2.0
4.0 -#- 4.0
30
100 80 60 40 20 0 100 80 60 40 20 0

Remaining Weights [%]

(a) MLP

Remaining Weights [%]

(b) ResNet

Figure 7. Robustness to corrupted data. Sparsification by increasing network depth Corrupted datasets MNIST-C, CIFAR10-C and
CIFAR100-C. There is a sweetspot corresponding to optimal sparsity. With higher depth and sparsity network connectivity declines
leading to simultaneous accuracy and robustness drop.
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Figure 8. Minimum recall among all classes. Network accuracy on the most sensitive classes does not decline with sparsity. Tested
without weight / data corruptions. Sparsification by increasing network width (left) and depth (right).
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Figure 9. One layer MLP performance on selected corruption types. For CIFAR10-C and CIFAR100-C we observe a clear trend

across all corruption types, which suggests that the sparser networks with increased width are more robust. We note that for simpler task
MNIST-C such increase in the performance is happening earlier in sparsity levels.
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Figure 10. VGG11 performance on selected corruption types. The results show a clear upwards trend across different corruption types
which indicates, that the networks get more robust as the sparsity and width increase.

Remaining Weights [%]

(2) MNIST-C

Remaining Weights [%]

(b) CIFAR10-C

— + 4 80 50 //0—00.
80 75 ®
— corruption = corruption = 45 corruption
= 6o —* brightness §70 —e— brightness °\; —e— brightness
§ ~#- fog 8 -#- fog 840 -~#- fog
§ = glass_blur §65 = glass_blur § = glass_blur
< 40 -~ impulse_noise = < 0 -+~ impulse_noise < 35 --+- impulse_noise
—4 motion_blur Tl —+- motion_blur —<+- motion_blur
20 -+ shot_noise 55 ~+ shot_noise 30 -+ shot_noise
4~ spatter —_— 4-  spatter 4~ spatter
* 50
100 80 60 40 100 80 60 40 20 100 80 60 40 20 0

Remaining Weights [%]

(c) CIFAR100-C

Figure 11. ResNet18 performance on selected corruption types. We observe a upwards trend across corruption types for CIFAR10-C
and CIFAR100-C, models with higher width and higher sparsity perform better on corrupted data. We note that the increase in the
performance for simpler task MNIST-C happens sooner.



