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Abstract
There are two prevailing methods for pre-training
on large datasets to learn transferable represen-
tations: 1) supervised pre-training on large but
weakly-labeled datasets; 2) contrastive training
on image only and on image-text pairs. While
supervised pre-training learns good representa-
tions that can be transferred to a wide range of
tasks, contrastively trained models such as CLIP
have demonstrated unprecedented zero-shot trans-
fer. In this work we compare the transferability
of the two aforementioned methods to multiple
downstream tasks. The pre-training distributions
we consider include YFCC, Conceptual Captions,
and ImageNet-21K while pre-training objectives
range from supervised to SimCLR, CLIP, and
SLIP. We observe that different pre-training meth-
ods with the same training source transfer simi-
larly given their ImageNet accuracy.

1. Introduction
The last few years of computer vision have witnessed scal-
ing in both dataset and model size. Supervised pre-training
on large but weakly-labeled datasets such as Instagram im-
ages (Mahajan et al., 2018) and JFT (Sun et al., 2017; Zhai
et al., 2021) learns good representations which can be trans-
ferred to a wide range of tasks. Abnar et al. (2021) study
the effect of pre-training on JFT-300 (Sun et al., 2017) and
ImageNet-21K (Deng et al., 2009) on transferring to mul-
tiple downstream tasks, across different architectures, up-
stream dataset and model sizes, concluding that learned
representations could be transferred well to downstream
tasks, however, such transfer performance is saturated.

In contrast to supervised pre-training, another promising
direction to scale the required data for large models is self-
supervised learning with contrastive loss. SimCLR (Chen
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et al., 2020) and MoCo (He et al., 2020) are two exam-
ples which learn the representation in image modality,
while CLIP (Radford et al., 2021), SLIP (Mu et al., 2021),
ALIGN (Jia et al., 2021), and BASIC (Pham et al., 2021)
leverage data from both image and text modalities, demon-
strating unprecedented robustness to the challenging distri-
bution shifts. However, such robustness improvements are
at best in the zero-shot setting.

Ericsson et al. (2021) show that semi-supervised contrastive
pre-training on ImageNet transfers well to downstream tasks
related to object recognition in natural images. Cole et al.
(2021) extend the ImageNet transfer study and show that the
learned representations by supervised methods can transfer
better than semi-supervised methods on non-ImageNet do-
mains, e.g., fine-grained classification. Radford et al. (2021)
and Jia et al. (2021) try finetuning contrastive image and
text models and show that the accuracy of their few-shot
fine-tuned models on downstream tasks is lower than that of
the original zero-shot model, and such performance drop is
compensated with higher shots. Wortsman et al. (2021) also
propose a finetuning strategy (WiSE-FT) for pre-trained
CLIP models on downstream tasks to reduce this perfor-
mance drop. Their proposed method linearly interpolates
the weights of the pre-trained model and that of the fine-
tuned model.

In this work, we investigate the transferability of learned rep-
resentations by different pre-training objectives to ImageNet,
CIFAR100, DTD, and CALTECH-101. We compare super-
vised pre-training on ImageNet-21K (Deng et al., 2009)
with 14M images to contrastive image and contrastive im-
age+text pre-training on YFCC-15m (Radford et al., 2021)
and Conceptual Captions 12M (Changpinyo et al., 2021).
We explore different impacting factors on transferability and
make the following observations:

• In few-shot transfer, supervised pre-training on
ImageNet-21K shows higher accuracy than contrastive
pre-training on YFCC-15m.

• Among contrastive models pretrained on YFCC-15m,
SLIP shows the best performance when transferring
learned representations from YFCC-15m to the down-
stream tasks, followed by SimCLR and CLIP.

• Given the same ImageNet accuracy in few-shot transfer,
supervised pre-training on ImageNet-21K shows lower
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Figure 1: Comparison of Supervised (cross-entropy) and Self-supervised (contrastive) pre-training with respect to
transferability to downstream tasks. When evaluated few-shot, supervised pre-training on ImageNet-21K shows higher
accuracy than contrastive pre-training on YFCC-15m. The difference is large for CIFAR100 and smaller for DTD and
CALTECH-101. The gap shrinks when we use all samples from the downstream task for finetuning. Supervised pre-training
on a subset of YFCC (YFCC-15m-cls) performs worst. Among contrastive pre-training methods, SLIP shows the best
performance when transferring the learned representations from YFCC-15m to the downstream tasks, followed by SimCLR
and CLIP.

accuracy, while SimCLR shows higher accuracy than
other methods.

• Different pre-training methods with the same training
source transfer similarly given their ImageNet accu-
racy.

2. Background
In this section we first review pre-training methods used in
this work and then discuss the details of the transfer learning
framework which we used. Details of different datasets can
be viewed in Appendix Section A.

2.1. Methods

SimCLR (Chen et al., 2020) applies random transforma-
tions to each image to get a pair of two augmented images.
These images are then passed through an encoder. The re-
sulting representations then get transformed and projected
via non-linear layers to obtain the final representations for
images and their augmented views. The similarity between
two augmented versions of an image is calculated using
cosine similarity. The idea is to pull together similar and
push away dissimilar images.

SUP-IN21K pre-trains ViT-B/16 on ImageNet-21K with
cross-entropy loss.

SUP CLS is the supervised classification using cross-
entropy loss and from scratch on YFCC-15m-cls dataset.

SimCLR+CLS is a SimCLR model pre-trained on YFCC-
15m, and fine-tuned using cross-entropy on YFCC-15m-cls.

CLIP (Radford et al., 2021) is directly trained on images
and their corresponding unstructured text from the web (400
million image and text pairs). Given a batch of M (image,
text) pairs, CLIP learns a multi-modal embedding space, by

jointly training an image-encoder and a text-encoder, such
that the cosine similarity of the valid M (image, text) pairs is
maximized. The resulting models achieve decent robustness
even on a series of challenging distribution shifts such as
ImageNetV2 (Recht et al., 2019), ImageNet-Sketch (Wang
et al., 2019), ImageNet-Adversarial (Hendrycks et al., 2021),
and ObjectNet (Barbu et al., 2019).

SLIP (Mu et al., 2021) combines self-supervision of Sim-
CLR with CLIP for better visual representations. The CLIP
and self supervised objectives are computed on the relevant
embedding and then accumulated into a single scalar loss.

2.2. Transfer Learning

In this work we investigate the transferability of the learned
representations in a few-shot learning setup. This is moti-
vated by the previous findings that as the number of down-
stream samples increases, the effect of transfer learning
shrinks (Kornblith et al., 2019; Mensink et al., 2021; Zoph
et al., 2020; Abnar et al., 2021). Therefore we mostly focus
on comparison between different settings where transferabil-
ity differs most i.e., few-shot learning. All pre-trained mod-
els are ViT-B/16 (Dosovitskiy et al., 2020). For Supervised-
ImageNet-21K we used the pre-trained model from Wight-
man (2019). SLIP, CLIP, and SimCLR checkpoints are from
Mu et al. (2021). SimCLR+CLS and SUP CLS checkpoints
are from Fang et al. (2022). We use the training procedure
from BeiT (Bao et al., 2021) for end-to-end finetuning on
downstream tasks. This procedure takes advantage of sig-
nificant regularization and data augmentation, as well as
layer-wise learning rate decay. We finetune the pre-trained
models for 100 epochs.
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Figure 2: ImageNet vs. downstream accuracy in few shot learning setting across different pre-training methods and
datasets. ImageNet accuracy has positive correlation with downstream accuracy. Removing the confounder of ImageNet
accuracy from Figure 5 changes the picture i.e., given the same ImageNet accuracy when evaluating few-shot, supervised
pre-training on ImageNet-21K shows lower accuracy, while SimCLR shows higher accuracy than other methods. Different
pre-training methods with the same training source transfer similarly given their ImageNet accuracy. Bigger points represent
larger number of shots.

3. Experiments and Results
Figure 5 shows the accuracy of multiple methods after
few-shot fine-tuning on three downstream tasks12. When
evaluated in few-shot setting, supervised pre-training on
ImageNet-21K shows higher accuracy than contrastive pre-
training on YFCC-15m. The difference is large for CI-
FAR100 and smaller for DTD and CALTECH. As stated
in Section 2.2, when we use all samples from the down-
stream task for finetuning, the gap between different mod-
els shrinks. Supervised pre-training on a subset of YFCC
(YFCC-15m-cls) performs worst. Among contrastive pre-
training methods, SLIP shows the best performance when
transferring learned representations from YFCC-15m to the
downstream tasks, followed by SimCLR and CLIP. Below
we run multiple dedicated studies to investigate the effect of
various impacting factor on transferability.

3.1. Does supervised finetuning help transferability?

To answer this question, we compare SimCLR pre-trained
on YFCC-15m, with the same method but further finetuned
on YFCC-15m-cls using cross-entropy loss, referred to as
SimCLR and SimCLR+CLS in the figures, respectively.
Both methods follow almost the same transfer accuracy
across different shots and datasets implying that supervised
finetuning on the upstream dataset has no effect on transfer-
ability.

3.2. Does language supervision help transferability?

We compare SimCLR pre-trained on YFCC-15m images
with CLIP pre-trained on YFCC-15m with both images and
text data. Figure 5 shows that when evaluated few-shot,
SimCLR pre-training shows higher accuracy than CLIP.

1CLIP Zero-shot: 34.5(CIFAR100), 21,2(DTD), 60.9(CAL-
TECH)

2SLIP Zero-shot: 45.2(CIFAR100), 26.1(DTD), 71.0(CAL-
TECH)

This finding is aligned with (Fang et al., 2022), in which
they show that language supervision does not contribute to
a model’s robustness, but simplifies training on a diverse
distribution of images by removing the need for consistent
annotation with class labels.

3.3. What is the effect of pre-training distribution?

In order to answer this question, we compare CLIP pre-
trained on YFCC-15m dataset with the same model but pre-
trained on Conceptual Captions-12M. Figure 3(a) shows
that different pre-training sources, keeping the pre-training
objective fixed (CLIP), result in different few-shot trans-
fer performance. Few-shot transfer of CC-12m learned
representations shows higher accuracies. The fine-tuning
performance gap for these two sources is at smallest for
DTD and larger for CIFAR100 and CALTECH-101. Higher
performance on Conceptual Captions could be attributed
to the quality of the text captions (Hendricks et al., 2021;
Hendricks & Nematzadeh, 2021) or the image distribution.
This is worth of further experiments as a potential future
direction. We also leave the investigations on the language
similarity (measured by perplexity) between pre-training
distribution and downstream tasks for future works.

3.4. What is the role of pre-training dataset size?

We compare CLIP models pre-trained on two different sizes
of Conceptual Captions dataset: 3M and 12M. Figure 3(b)
shows that the larger pre-training dataset results in higher
few-shot transfer accuracy. For Conceptual Captions ex-
periments, we used checkpoints from SLIP GitHub reposi-
tory (Mu et al., 2021).

3.5. What is the role of pre-training objective in transfer
learning?

Comparison between SLIP and CLIP pre-training objectives
shows the effect of adding self-supervised contrastive learn-
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(a) Effect of pre-training dataset
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(b) Effect of pre-training size

Figure 3: Effect of pre-training dataset and pre-training
dataset size. Left: We compare CLIP pre-trained on YFCC-
15m vs. CC-12m. Different pre-training sources, keeping
the pre-training objective fixed (CLIP), result in different
few-shot transfer performance. Few-shot transfer of CC-
12m learned representation shows higher accuracies. Right:
We fix the pre-training objective and dataset to CLIP and
Conceptual Captions. Larger pre-training dataset results in
higher few-shot transfer accuracies.

ing (SimCLR) objective. Figure 5 shows that SLIP performs
better than CLIP in all shots and datasets. However, the gap
between these two methods shrinks as the number of shots
increases; in the full-finetuning setting, SLIP performs only
slightly better than CLIP.

3.6. Distance to pre-training dataset

Table 1 compares CLIP and SLIP in linear and full-
finetuning settings, across different datasets. The difference
between Full and Linear finetuning can be used as proxy of
the distance to the upstream dataset, here YFCC-15m. Intu-
itively, a small gap between full and linear finetuning would
suggest that the upstream features can be transferred more
easily. It is interesting to see that the ranking of differences
between full and linear finetuning is the same for CLIP and
SLIP. i.e., CALTECH < DTD < ImageNet < CIFAR100.
It is worth noting that the image resolution of downstream
tasks differs which might be a confounding factor in such a
ranking.

Method ImageNet CIFAR100 DTD CALTECH

CLIP 66.5 70.7 66.0 85.3
SLIP 72.1 71.6 73.9 89.7

CLIP 80.6 (+14.1) 85.8 (+15.1) 76.3 (+10.3) 88.1 (+2.8)
SLIP 82.6 (+10.5) 89.3 (+17.7) 79.8 (+5.9) 92.6 (+2.9)

Table 1: Comparison between linear (first block) and full-
finetuning (second block). The difference between full and
linear finetuning can be used as a proxy for distance to the
upstream dataset e.g., CALTECH < DTD < ImageNet <
CIFAR100.

3.7. Does better transfer to ImageNet correspond to
better transfer to other downstream tasks?

Figure 2 shows the correlation between ImageNet few-shot
evaluation and different downstream tasks. We can observe
that models with the same pre-training source which achieve
higher ImageNet accuracy, also perform better on the down-
stream task. This shows that ImageNet is a good proxy for
transferability across different downstream tasks. In con-
trast to Figure 5, given the same ImageNet accuracy when
evaluating few-shot, supervised pre-training on ImageNet-
21K shows lower accuracy, while SimCLR shows higher
accuracy than other methods. Different pre-training meth-
ods with the same training source transfer similarly given
their ImageNet accuracy.

3.8. Can we predict the full-finetune accuracy with
lower computation?

Kendall’s τ p-value

CIFAR100 0.867 0.017
DTD 1.000 0.003

CALTECH 1.000 0.003
IMAGENET 1.000 0.083

Table 2: Kendall’s τ coefficient to capture correlation be-
tween 1-shot and full-finetuning accuracy.

1-shot accuracy as a proxy. Table 2 shows the correlation
between full-finetuning and 1 shot accuracy as a low com-
putation proxy. As the Kendall’s τ coefficients and their
p-values indicate, 1 shot accuracy can be used as a proxy
to choose the best pre-trained model to finetune on a down-
stream task without actually having to do so. For ImageNet,
we used the 3 full finetuning accuracies reported in Mu
et al. (2021) and another from Dosovitskiy et al. (2020).
For other datasets, we employ all six methods described
in Section 2.1. Exact values for full-finetuning accuracies
can be seen in Table 4. Appendix Section C.1 also shows
the correlation between 1-NN and full-finetuning accuracy.

4. Discussion
In this work we compare supervised and contrastive self-
supervised pre-training on transferability of learned rep-
resentations to multiple downstream tasks. We consider
ImageNet-21K for supervised pre-training, YFCC-15m and
Conceptual Captions-12m for contrastive image only and
image+text pre-training. Pre-training objectives include su-
pervised, SimCLR, CLIP, and SLIP. Our observations show
that different pre-training methods with the same training
source transfer similarly given their ImageNet accuracy. We
leave further investigations on more pre-training sources
and downstream tasks for future works.
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Appendix

A. Datasets
YFCC. We use the YFCC-15m (Radford et al., 2021) dataset, a subset of YFCC-100M (Thomee et al., 2016) filtered to
only images with English titles or descriptions. The dataset contains 14,829,396 images with natural language captions
associated with each image.

We also followed Fang et al. (2022) to convert YFCC to a classification dataset (YFCC-15m-cls) with class labels. They
assign ImageNet labels to each image using a simple strategy: if the title or description contains the name of an ImageNet
synset or synonym Miller (1995), they assign the corresponding synset label to the image. If an image contains no or
multiple ImageNet synsets, they discard that image. This results in 1,694,125 images (11.4% of the full dataset) covering
953 ILSVRC classes.

ImageNet-21K. To have same number of images as YFCC-15m, we chose ImageNet-21K (Deng et al., 2009) for supervised
pretraining, which consists of 14,197,122 images, each tagged in a single-label fashion by one of 21,841 possible classes.

Conceptual-Captions. To investigate the effect of pre-training dataset distribution and dataset size we also use pre-
trained checkpoints on Conceptual Captions 3M (CC-3M) and Conceptual Captions 12M (CC-12M) (Sharma et al., 2018;
Changpinyo et al., 2021). CC-3M represtns a wide variety of images and caption styles and is built via extraction and
filtering of images and their associated texts from billions of web pages. To build CC-12M dataset, the authors take a step
further and relax the data collection pipeline used to build the previous CC-3M version and obtain 12 million image and text
pairs.

Downstream tasks. We measure the transferablity of YFCC learned representations using different methods on CI-
FAR100 (Krizhevsky et al., 2009), DTD (Cimpoi et al., 2014), and Caltech-101 (Fei-Fei et al., 2004)

Downstream Task Train Size Test Size Classes Resolution

CIFAR100 50000 10000 100 32× 32
DTD 3760 1880 47 300× 300 to 640× 640

CALTECH-101 3060 6084 102 300× 200

Table 3: Details of down stream datasets used in our experiments.

B. Training Hyperparameters
B.1. Pretraining on YFCC

We used CLIP, SLIP and SimCLR checkpoints from SLIP GitHub repository (Mu et al., 2021). For SUP-CLS and
SimCLR+CLS we use the checkpoints trained in Fang et al. (2022).

B.2. Transfer to downstream tasks

We follow the procedure from BeiT (Bao et al., 2021) by using fine-tuning scripts from SLIP GitHub repository (Mu et al.,
2021) for our full fine-tuning and few-shot training experiments. Mu et al. (2021) use DeiT training procedure for smaller
datasets but we followed the BeiT training procedure for all of our experiments, including few-shot learning experiments.

We use a batch size of 800 for full tuning and 100 for few-shot training experiments (except for 1 shot experiments on DTD
dataset where we use a batch size of 32 due to lower number of classes in this dataset). We use the learning rate of 4e-3 when
using a batch size of 800 and adjust it proportional to batch size whenever it is changed; according to Goyal et al. (2017).
Moreover, we employ layerwise learning rate decay to exponentially decrease the learning rate across layers in the model.

All the experiments in this study are trained for 100 epochs using AdamW optimizer with a weight decay of 0.05 and by
employing different data augmentation methods and regularization techniques. We also set drop path to 0.1 and layer decay
to 0.65 for all the experiments.



How well do contrastively trained models transfer?

Method ImageNet1 CIFAR100 DTD CALTECH-101

SUP CLS - 62.17 50.10 56.51
SimCLR 82.5 88.94 79.57 91.83
SimCLR+CLS - 88.74 78.35 91.35
CLIP 80.5 85.85 76.38 88.18
SLIP 82.6 89.36 79.89 92.69
SUP-IN21K 83.9 90.65 81.70 95.00

1 Values from (Mu et al., 2021; Dosovitskiy et al., 2020)

Table 4: Comparison between different methods pretrained on YFCC-15m and then full-finetuned on different
downstream tasks. ImageNet accuracy is a good proxy for the full fine-tuning performance on other downstream tasks.

C. Full fine-tuning performance on downstream tasks
C.1. KNN as a proxy for full-finetuning

While full-finetuning is computationally expensive, calculating KNN (K = 1) is cheap and if we can show that the 1-NN
and full-finetuning accuracies are correlated, 1-NN can be used as a low computation proxy to select the best pre-training
method without actual finetuning. Here we use K-NN with K = 1 as follows: For each pre-training method, we first obtain
the final embeddings of all training and test images. Then, for each test sample, the predicted label is the label of the closest
sample from the training set, i.e., the sample with the highest cosine similarity to its embedding vector. We used Kendall’s τ
coefficient (Kendall, 1938) to calculate the ordinal association between ground truth full-finetuning results and the 1-NN
results for each dataset.

Table 5 shows the correlation between full-finetuning and 1-NN accuracy. The Kendall’s τ coefficient for correlation between
ranking of different methods on CIFAR100, DTD, and CALTECH101 datasets are 0.60, 1.00, and 0.80, respectively. This
indicates a good correlation between 1-NN and fine tuning, showing that 1-NN can be used to select the best pre-training
method without actual finetuning.

Kendall’s τ p-value

CIFAR100 0.60 0.23
DTD 1.00 0.02

CALTECH 0.80 0.08

Table 5: Kendall’s τ coefficient to capture correlation between 1−NN and full-finetuning.

D. Further experiments
We see that both pretraining distribution and loss function play a role in transferring learned representation. Figure 2 shows
that when the pretraining distribution is fixed to YFCC-15m, there is small difference between different methods (loss
functions).

We need to control for the data so that the pretraining loss functions are comparable. Ideally we look for a dataset that
support supervised, CLIP, and contrastive learninge.g., SimCLR. If we use ImageNet-21K, there are three possibilities for
he CLIP model:

• take the labels from IN21K and use templates to create captions.

• synthetically generated captions from an image captioning model

• We can find the flickr images for IN21K, hence getting the real captions.

Solving the issue for IN21K will add another model to YFCC-15m with CC-12m in Figure 3(b) to compare pretraining
distributions.
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Figure 4: Effect of pre-training dataset in SimCLR transferability to downstream tasks. a As we have more finetuning
data, the effect of pretraining dataset become smaller i.e., If we do full-finetuning, a random subset of YFCC works as well
as Hardmatch and nicely curated IN-1K. However, if we look at smaller number of shots, different pretraining datasets
would differ in results and their order is depending on downstream task, e.g., IN-1K > random > hardmatch for CIFAR100,
while for DTD random > hardmatch > IN-1K b

alarge portion of YFCC and IN-1K come from flickr. We will use Thao’s paper to see non-flickr pretraining distributions, forming
Fig2 in Abnar et al. (2021) but different 6 datasets

bneeds double-check with different hyperparameters

### RE: We compared SimCLR pre-trained on YFCC-15m with supervised on ImageNet21K. Here we also
pre-train SimCLR on ImageNet21K ###

D.1. ImageNet1K transfer

SimCLR trained on ImageNet-1K and transferred to downstream tasks. ### RE: next add Hardmatch-Simclr: 1682744
images in 952 classes ###

D.2. ImageNet21K transfer

We compared SimCLR pre-trained on YFCC-15m with supervised on ImageNet21K. Here we also pre-train SimCLR on
ImageNet21K. (Kornblith et al., 2021) investigates the role of loss functions on transferability. They pointed that all layer
except the last layers behave similarly despite having different loss functions for pretraining.

D.3. YFCC-15m-cls (Hardmatch) transfer

X-axis in Figure 2 represents the transfer on ImageNet-1K(few-shot and full-finetune). What if we change the X-axis from
IN-1K to subset of YFCC-15m which resembles the ImageNet classes?

D.4. Compare different semi-supervised methods

We can compare different semi-supervised methods similar to Figure 5 related works need to be discussed here: Ericsson
et al. (2021); Kotar et al. (2021).
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Figure 5: (a) Effect of pre-training Loss (b) Effect of pre-training dataset


